Advertisement

Gem Treatments, Synthetics and Imitations

  • Stefanos Karampelas
  • Lore Kiefert
  • Danilo Bersani
  • Peter Vandenabeele
Chapter
  • 8 Downloads
Part of the Short Introductions to Cultural Heritage Science book series (SICHS)

Abstract

When examining a piece of antique jewellery or object for its authenticity, it is not only important to know about the types of gemstones that existed at the time, but also about the various types of treatments, imitations and synthetic gems. Treatments involve all processes used to modify the appearance of gem materials in order to make the more attractive and desirable. Some treatments go back to Minoan times. Imitations are materials looking similar to the more valuable gem material supposed to imitate but having a different chemical composition and crystal structure (e.g., blue glass and sapphire) and appeared simultaneously to gemstones from the very early times. Synthetic gems are laboratory grown materials with essentially the same chemical composition (differences between natural and synthetic gems are at impurities level) and crystal structure of their natural counterparts and are commercially available since the beginning of nineteenth century.

References

  1. Abduriyim A, Kimura H, Yokoyama Y, Nakazono H, Wakatsuki M, Shimizu T, Tansho M, Ohki S (2009) Characterization of green amber with infrared and nuclear magnetic resonance spectroscopy. Gems Gemol 45:158–177Google Scholar
  2. Adamo I, Pavese A, Prosperi L, Diella V, Ajò D, Gatta GC, Smith CP (2008) Aquamarine, maxixe-type beryl, and hydrothermal synthetic blue beryl: analysis and identification. Gems Gemol 44:214–226CrossRefGoogle Scholar
  3. Balitsky VS, Lu T, Rossman GR, Makhinova IB, Mar’in AA, Shigley JE, Elen S, Dorogovin BA (1999) Russian synthetic ametrine. Gems Gemol 35:122–134CrossRefGoogle Scholar
  4. Bauer M (1896) Ueber das Vorkommen der Rubine in Birma. Neues Jahrbuch fur Mineralogie, Geologie und Palaeontologie 2:197–238Google Scholar
  5. Bersani D, Azzi G, Lambruschi E, Barone G, Mazzoleni P, Raneri S, Longobardo U, Lottici PP (2014) Characterization of emeralds by micro-Raman spectroscopy. J Raman Spectrosc 45:1293–1300CrossRefGoogle Scholar
  6. Chalain JP, Fritsch E, Hänni H (1999) Detection of GE POL diamonds: a first stage. Revue de Gemmologie AFG 138(/139):30–33Google Scholar
  7. Chalain JP, Fritsch E, Hänni H (2000) Identification of GE POL diamonds: a second step. J Gemmol 27:73–78CrossRefGoogle Scholar
  8. Collins AT, Kanda H, Kitawaki H (2000) Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diam Relat Mater 9:113–122CrossRefGoogle Scholar
  9. Eaton-Magana S, Shigley JE (2016) Observations on CVD-grown synthetic diamonds: a review. Gems Gemol 52:222–245CrossRefGoogle Scholar
  10. Elen S (2001) Spectral reflectance and fluorescence characteristics of natural-color and heat-treated “golden” south sea cultured pearls. Gems Gemol 37:114–123CrossRefGoogle Scholar
  11. Elwell D (1979) Man-made gemstones. Ellis Horwood, Chichester, 191 ppGoogle Scholar
  12. Fisher D, Spits RA (2000) Spectroscopic evidence of GE POL HPHT-treated natural type IIa diamonds. Gems Gemol 36:42–49CrossRefGoogle Scholar
  13. Gubelin EJ (1950) New process of artificially beautifying gemstones. Gems Gemol 6:243–254Google Scholar
  14. Gubelin E, Graziani G, Kazmi AH (1986) Pink Topaz from Pakistan. Gems Gemol 22:140–151CrossRefGoogle Scholar
  15. Hanano J, Wildman M, Yurkiewicz PG (1990) Majorica imitation pearls. Gems Gemol 26:178–188CrossRefGoogle Scholar
  16. Hanni HA (1992) Identification of fissure-treated gemstones. J Gemmol 23:201–205CrossRefGoogle Scholar
  17. Hanni HA, Henn U (2015) Modern doublets, manufactured in Germany and India. J Gemmol 34:479–482Google Scholar
  18. Hanni HA, Kiefert L (1994) AGEE hydrothermal synthetic emeralds. Jewel Siam Oct/Nov: 80–85Google Scholar
  19. Hanni HA, Pettke T (2002) Eine neue Diffusionsbehandlung liefert orangefarbene und gelbe Saphire. Zeitschrift der deutschen Gemmologischen Gesellschaft 51:137–152Google Scholar
  20. Hanni H, Schubiger B, Kiefert L, Häberli S (1998) Raman investigation on two historical objects from Basel cathedral: the reliquary cross and Dorothy monstrance. Gems Gemol 34:102–125CrossRefGoogle Scholar
  21. Hanni HA, Krzemnicki MS, Kiefert L, Chalain JP (2004) Ein neues Instrument für die analytische Gemmologie: LIBS. Zeitschrift der deutschen Gemmologischen Gesellschaft 53:79–86Google Scholar
  22. Huber B, Kiefert L, Link K, Laurs B (2017) Borosilicate glass resembling gem crystals. J Gemmol 35:494–496Google Scholar
  23. Huda SNA (1998) Arab roots of gemology: Ahmad ibn Yusuf al Tifhashi’s best thoughts on the best of stones. Scarecrow Press, Lanham, 274 ppGoogle Scholar
  24. Hughes RW, Emmett JL (2005) Heat seeker. Guide 24(1):4–7Google Scholar
  25. Hughes RW, Manorotkul W, Hughes EB (2017) Ruby & sapphire: a gemologist’s guide. Lotus Publishing, Bangkok, 816 ppGoogle Scholar
  26. Karampelas S, Fritsch E, Zorba T, Paraskevopoulos KM (2011) Infrared spectroscopy of natural vs. synthetic amethyst: an update. Gems Gemol 47:196–201CrossRefGoogle Scholar
  27. Kiefert L (2015) Natural green Amber from Ethiopia. In: Proceedings of the 34th international gemmological conference 2015, Vilnius, Lithuania, pp 22–25Google Scholar
  28. Kiefert L, Schmetzer K, Hänni HA (2001) Synthetic moissanite from Russia. J Gemmol 27:471–481CrossRefGoogle Scholar
  29. Kiefert L, Chalain JP, Häberli S (2005) Case study: diamonds, gemstones and pearls: from the past to the present. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history, vol XXI. Royal Society of Chemistry, Cambridge, pp 379–402Google Scholar
  30. Konig R, Hopp J (eds) (1994) C. Plinius Secundus d. Ä., Naturkunde. Lateinisch-deutsch, Buch XXXVII: Steine: Edelsteine, Gemmen, Bernstein. Artemis & Winkler, Zürich, 263 ppGoogle Scholar
  31. Krzemnicki MS, Hänni HA, Walters RA (2004) A new method for detecting be diffusion-treated sapphires: laser-induced breakdown spectroscopy (LIBS). Gems Gemol 40:314–322CrossRefGoogle Scholar
  32. Krzemnicki KS, Herzog F, Zhou W (2011) A turquoise jewelry set containing fossilized dentine (odontolite) and glass. Gems Gemol 47:296–301CrossRefGoogle Scholar
  33. Misiorowski E (2000) Pretty in pink. Professional Jeweller, January 2000Google Scholar
  34. Nassau K (1980) Gems made by man. Chilton Book Company, Radnor, 364 ppGoogle Scholar
  35. Nassau K (1984) Gemstone enhancement. Butterworths, London, 221 ppGoogle Scholar
  36. Nassau K (1985) Altering the color of topaz. Gems Gemol 21:26–34CrossRefGoogle Scholar
  37. Nassau K, McClure SF, Elen S, Shigley JE (1997) Synthetic moissanite: a new diamond substitute. Gems Gemol 33:260–275CrossRefGoogle Scholar
  38. O’Donoghue M (2005) Artificial gemstones. NAG Press, London, 294 ppGoogle Scholar
  39. Overton TW, Shigley JE (2008) A history of diamond treatments. Gems Gemol 44:32–55CrossRefGoogle Scholar
  40. Peretti A, Smith CP (1993) A new type of synthetic ruby on the market: offered as hydrothermal rubies from Novosibirsk. Aust Gemmol 18:149–157Google Scholar
  41. Peretti A, Mullis J, Mouawad F, Guggenheim R (1997) Inclusions in synthetic rubies and synthetic sapphires produced by hydrothermal methods (TAIRUS, Novosibirsk, Russia). J Gemmol 25:540–561CrossRefGoogle Scholar
  42. Poon PY, Wong SY, Lo C (2015) Large HPHT-grown synthetic diamonds examined in GIA’s Hong Kong laboratory. Gems Gemol 51:65–66Google Scholar
  43. Pough FH (1957) The coloration of Gemstones by Electron Bombardment. Sonderheft zur Zeitschrift der Deutschen Gemmologischen Gesellschaft für Edelsteinkunde, pp 71–78Google Scholar
  44. Read PG (2005) Gemmology, 3rd edn. Elsevier, Oxford, 324 ppGoogle Scholar
  45. Reiche I, Vignaud C, Champagnon B, Panczer G, Brouder C, Morin G, Sole VA, Charlet L, Menu M (2001) From mastodon ivory to gemstone: the origin of turquoise color in odontolite. Am Mineral 86:1519–1524CrossRefGoogle Scholar
  46. Sastry MD, Mane SN, Gaonkar MP, Bagla H, Panjikar J, Ramachandran KT (2009) Evidence of colour-modification induced charge and structural disorder in natural corundum: spectroscopic studies of beryllium treated sapphires and rubies. IOP Conf Ser Mater Sci Eng 2:1–4CrossRefGoogle Scholar
  47. Schmetzer K, Kiefert L (1998) The colour of Igmerald (I.G. Farbenindustrie flux-grown synthetic emerald). J Gemmol 26:145–155CrossRefGoogle Scholar
  48. Schmetzer K, Peretti A (1999) Some diagnostic features of Russian hydrothermal synthetic rubies and sapphires. Gems Gemol 35:17–28CrossRefGoogle Scholar
  49. Schmetzer K, Kiefert L, Bernhardt HJ, Zhang B (1997) Characterization of Chinese hydrothermal synthetic emerald. Gems Gemol 33:276–291CrossRefGoogle Scholar
  50. Shigley JE, Fritsch E, Koivula JI, Sobolev NV, Malinovsky IY, Pal’yanov YN (1994) The gemological properties of Russian gem-quality synthetic yellow diamonds. Gems Gemol 29:228–248CrossRefGoogle Scholar
  51. Smith CP, Bosshart G, Ponahlo J, Hammer VMF, Klapper H, Schmetzer K (2000) GE POL diamonds: before and after. Gems Gemol 36:192–215CrossRefGoogle Scholar
  52. Themelis T (1992) The heat treatment of ruby and sapphire. Gemlab Inc, Bangkok, 236 ppGoogle Scholar
  53. Themelis T (2004) Flux-enhanced rubies & sapphires. Gemlab Inc, Bangkok, 48 ppGoogle Scholar
  54. Wang W, Scarratt K, Emmett JL, Breeding, Douthit CR (2006a) The effects of heat treatment on zircon inclusions in Madagascar sapphires. Gems Gemol 42:134–150CrossRefGoogle Scholar
  55. Wang W, Scarratt K, Hyatt A, Shen A, Hall M (2006b) Identification of “chocolate pearls” treated by Ballerina Pearl Co. Gems Gemol 42:222–235CrossRefGoogle Scholar
  56. Webster R, Anderson BW (1983) Gems: their sources, description and identification, 4th edn. Butterworths, London, 1006 ppGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stefanos Karampelas
    • 1
  • Lore Kiefert
    • 2
  • Danilo Bersani
    • 3
  • Peter Vandenabeele
    • 4
  1. 1.Bahrain Institute for Pearls & Gemstones (DANAT)ManamaBahrain
  2. 2.Gubelin Gem LabLucerneSwitzerland
  3. 3.Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
  4. 4.Department of ArchaeologyGhent UniversityGhentBelgium

Personalised recommendations