Advertisement

Generalized Net Model of the Network for Automatic Turning and Setting the Lighting in the Room with Intuitionistic Fuzzy Estimations

  • Tihomir VidevEmail author
  • Sotir Sotirov
  • Boris Bozveliev
Chapter
  • 45 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 862)

Abstract

Turning the lights on automatically helps people who enter a current room to turn on the lighting depending on the settings made by a person. In this paper we will take a look how by scanning the iris the system recognizes the person who is entering the room depending on if the the outside light exceeds the set in advance threshold value, the lighting turns on with the settings for lighting of a specific person and it also lets corrections to be made in the set in advance parameters.

Keywords

Generalized net Lighting systems Tthreshold value Scan the iris Lighting settings 

Notes

Acknowledgements

This work was supported by the Bulgarian Ministry of Education and Science under the National Research Programme “Information and Communication Technologies for a Digital Single Market in Science, Education and Security” approved by DCM # 577/17.08.2018.

References

  1. 1.
    Atanassov, K., Aladjov, H.: Generalized Nets in Artificial Intelligence: Volime 2: Generalized Nets and Machine Learning. “Prof. Marin Drinov” Publishing House, Sofia (2000)Google Scholar
  2. 2.
    Atanassov, K.: Generalized nets as tools for modelling of intelligent systems. In: 9th IWGN, Sofia, 4 July 2008Google Scholar
  3. 3.
    Atanassov, K.: Index matrices with elements index matrices. In: Proc. Jangjeon Math. Soc. 21(2), 221–228 (2018)Google Scholar
  4. 4.
    Atanassov, K.: Intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets. Adv. Stud. Contemp. Math. 28(2), 167–176 (2018). Atanassov, K.: n-Dimensional extended index matrices. Adv. Stud. Contemp. Math. 28(2), pp. 245–259 (2018)Google Scholar
  5. 5.
    Atanassov, K., Sotirova, E., Bureva, V.: On index matrices. Part 4: new operations over index matrices. Adv. Stud. Contemp. Math. 23(3), 547–552 (2013)Google Scholar
  6. 6.
    Bureva, V., Sotirova, E., Bozov, H.: Generalized net model of biometric identification process. In: Proceedings of the 20th International Symposium on Electrical Apparatus and Technologies (SIELA), pp. 1–4 (2018)Google Scholar
  7. 7.
    Wikipedia, wikipedia.org—Threshold model, 30 May 2018Google Scholar
  8. 8.
    Atanassov, K., Sotirova, E., Andonov, V.: Generalized net model of multicriteria decision making procedure using InterCriteria analysis. In: Advances in Fuzzy Logic and Technology 2017, Advances in Intelligent Systems and Computing, vol. 641, pp. 99–111 (2018)Google Scholar
  9. 9.
    Bureva, V., Sotirova, E., Popov, S., Mavrov, D., Traneva, V.: Generalized net of cluster analysis process using STING: a statistical information grid approach to spatial data mining. In: International Conference on Flexible Query Answering Systems, Lecture Notes in Computer Science, vol. 10333, pp. 239–248 (2017)CrossRefGoogle Scholar
  10. 10.
    Bureva, V., Yovcheva, Pl., Sotirov, S.: Generalized net model of fingerprint recognition with intuitionistic fuzzy evaluations. In: Advances in Fuzzy Logic and Technology 2017, Advances in Intelligent Systems and Computing, vol. 641, pp. 286–294 (2018)Google Scholar
  11. 11.
    Bureva, V., Popov, S., Sotirova, E., Miteva, B.: generalized net of the process of hierarchical cluster analysis. Ann. Assen Zlatarov Univ. Burgas Bulgaria XLVI(1), 107–111 (2017)Google Scholar
  12. 12.
    Bureva, V., Sotirova, E., Chountas, P.: Generalized net of the process of sequential pattern mining by generalized sequential pattern algorithm (GSP). Adv. Intell. Syst. Comput. 323, 831–838 (2015)Google Scholar
  13. 13.
    Judd, D.B., MacAdam, D.L., Wyszecki, G., Budde, H.W., Condit, H.R., Henderson, S.T., Simonds, J.L.: Spectral distribution of typical daylight as a function of correlated color temperature. J. Opt. Soc. Am.Google Scholar
  14. 14.
    Petkov, T., Jovcheva, Pl., Tomov, Z., Simeonov, S., Sotirov, S.: A Generalized net model of the neocognitron neural network. In: International Conference on Flexible Query Answering Systems, Lecture Notes in Computer Science, vol. 10333, pp. 249–259 (2017)CrossRefGoogle Scholar
  15. 15.
    Torsten, S., Stoica, P.: System Identification. Prentice Hall, New York. ISBN 978-0138812362 (1989)Google Scholar
  16. 16.
    Andreev, N., Vassilev, P., Atanassova, V., Roeva, O., Atanassov, K.: Generalized net model of the cooperation between the Departments of transfusion Haematology and the National Centre of transfusion Haematology. In: Advances in Neural Networks and Applications 2018 (ANNA’18), pp. 1–4, St. Konstantin and Elena Resort, Bulgaria, 15–17 Sept 2018Google Scholar
  17. 17.
    Roeva, O.: Application of artificial bee colony algorithm for model parameter identification. In: Zelinka, I., Vasant, P., Duy, V., Dao, T., et al. (eds.) Innovative Computing, Optimization and Its Applications, Studies in Computational Intelligence, vol. 741, pp. 285–303. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-66984-7_17. Book ISBN: 978-3-319-66983-0Google Scholar
  18. 18.
    Sotirova, E.N., Dimitrov, D.D., Atanassov, K.T.: On some applications of game method for modelling Part 1: Forest dynamics. Proc. Jangjeon Math. Soc. 15(2), 115–123 (2012)zbMATHGoogle Scholar
  19. 19.
    Ribagin, S., Chountas, P., Pencheva, T.: Generalized Net Model of Muscle Pain Diagnosing. Lecture Notes in Artificial Intelligence, vol. 10333, pp. 269–275 (2017). ISSN 0302-9743, ISSN 1611-3349 (electronic), ISBN 978-3-319-59692-1Google Scholar
  20. 20.
    Angelova, M., Roeva, O., Pencheva, T.: Artificial bee colony algorithm for parameter identification of fermentation process model. In: Submitted to 3rd International Conference on: Applied Physics, System Science and Computers. Lecture Notes in Electrical Engineering, Dubrovnik, Croatia, 26–28 Sept 2018 (in press)Google Scholar
  21. 21.
    Fidanova, S., Roeva, O.: InterCriteria Analysis of Different Variants of ACO algorithm for Wireless Sensor Network Positioning, Lecture Notes in Computer Science (in press)Google Scholar
  22. 22.
    Gocheva, E., Sotirov, S.: Modelling of the verification by iris scanning by generalized nets. In: 9th IWGN, Sofia, 4 July 2008Google Scholar
  23. 23.
    Shannon, A., Sotirova, E., Hristova, M., Kim, T.: Generalized net model of a student’s course evaluation with intuitionistic fuzzy estimations in a digital university. Proc. Jangjeon Math. Soc. 13(1), 31–38 (2010)zbMATHGoogle Scholar
  24. 24.
    Zoteva, D., Atanasssova, V., Roeva, O., Szmidt, E.: Generalized net model of artificial bee colony optimization algorithm. In: Advances in Neural Networks and Applications 2018 (ANNA’18), pp. 1–4, St. St. Konstantin and Elena Resort, Bulgaria, 15–17 Sept 2018Google Scholar
  25. 25.
    Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution. Proc. Natl. Acad. Sci. USA 104(13), 13711–13716CrossRefGoogle Scholar
  26. 26.
    Gioia, D.A., Patvardhan, S.: Identity as Process and Flow. Published to Oxford Scholarship (2012).  https://doi.org/10.1093/acprofoso/9780199640997.003.0003
  27. 27.
    Zetter, K.: Reverse-engineered irises look so real, they fool eye-scanners. Wired Magazine. Retrieved 25 July 2012Google Scholar
  28. 28.
    Peneva, D., Tasseva, V., Kodogiannis, V., Sotirova, E., Atanassov, K.: Generalized nets as an instrument for description of the process of expert system construction. IEEE Intelligent Systems, Art. no. 4155522, pp. 755–759Google Scholar
  29. 29.
    Jaspal, R., Breakwell, G.: Identity Process Theory Identity, Social Action and Social Change. Cambridge University Press, Cambridge. ISBN 978–1-107-02270-6 (2014)Google Scholar
  30. 30.
    Northeast Document Conservation Center Revised 2012. Protection from Light DamageGoogle Scholar
  31. 31.
    Fidanova, S., Roeva, O.: Influence of Ant Colony Optimization Parameters on the Algorithm Performance, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10665, pp. 358–365 (2018)CrossRefGoogle Scholar
  32. 32.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1)Google Scholar
  33. 33.
    Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg (1999)CrossRefGoogle Scholar
  34. 34.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
  35. 35.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 333–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.“Prof. Dr, Assen Zlatarov” UniversityBurgasBulgaria

Personalised recommendations