Fuzzy Worlds and the Quest for Modeling Complex-Adaptive Systems

  • Miguel MelgarejoEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 862)


This chapter introduces the concept of fuzzy world as an ontological basis for modeling complex-adaptive systems. The concept is grounded on a phenomenological analysis of these systems over micro and macro scales. Discussion is developed from a recapitulation of some concepts of complexity science and complex systems modeling. Finally, the argument points out that fuzzy worlds find in fuzzy sets and systems theory a natural epistemological and methodological support.


  1. 1.
    Ackoff, R.L., Gharajedaghi, J.: Reflections on systems and their models. Syst. Res. 13(1), 13–23 (1996)CrossRefGoogle Scholar
  2. 2.
    Arendt, H.: The Human Condition. University Press, Chicago (1989)Google Scholar
  3. 3.
    Arnold, T.R.: Procedural knowledge for integrated modelling: towards the modelling playground. Environ. Model. Softw. 39, 135–148 (2013)CrossRefGoogle Scholar
  4. 4.
    Bak, P., Chen, K.: Self-organized criticality. Sci. Am. 264(1), 46–53 (1991)CrossRefGoogle Scholar
  5. 5.
    Bar-Yam, Y.: Dynamics of Complex Systems. Addison Wesley Longman, Reading, Massachusetts (1997)zbMATHGoogle Scholar
  6. 6.
    Berger, T., Birner, R., Díaz, J., McCarthy, N., Wittmer, H.: Capturing the complexity of water uses and water users within a multi-agent framework. In: Craswell, E., Bonnell, M., Bossio, D., Demuth, S., Van De Giesen, N. (eds.) Integrated Assessment of Water Resources and Global Change: A North-South Analysis, pp. 129–148. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  7. 7.
    Bettencourt, L.: The origins of scaling in cities. Science 340(6139), 1438–1441 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cowan, F.S., Allen, J.K., Mistree, F.: Functional modelling in engineering design: a perspectival approach featuring living systems theory. Syst. Res. Behav. Sci. 23(3), 365–381 (2006)CrossRefGoogle Scholar
  9. 9.
    Dopfer, K.: The economic agent as rule maker and rule user: Homo Sapiens Oeconomicus. J. Evol. Econ. 14(2), 177–195 (2004)CrossRefGoogle Scholar
  10. 10.
    Dopfer, K.: Evolutionary economics : a theoretical framework. In: The Evolutionary Foundations of Economics, p. 5 (2005)CrossRefGoogle Scholar
  11. 11.
    Dreyfus, H.: Being-in-the-World: A Commentary on Heidegger’s Being and Time, Division I. Bradford Book, London, UK (1990)Google Scholar
  12. 12.
    Epstein, J.: Why model? J. Artif. Soc. Soc. Simul. 11(4), 6 (2008)Google Scholar
  13. 13.
    Epstein, J.M.: Generative Social Science (2006)Google Scholar
  14. 14.
    Gadamer, H.G.: Notes on planning for the future. Daedalus 95(2), 572–589 (1966)Google Scholar
  15. 15.
    Heidegger, M.: The question concerning technology. In: The Question Concerning Technology and other essays, chap. 1, pp. 4–35. Garland publishing (1977)Google Scholar
  16. 16.
    Heidegger, M.: Being and Time (1953), 2nd edn. SUNY Press (2010)Google Scholar
  17. 17.
    Heidegger, M., Grene, M.: The age of the world view. Boundary 2 4(2), 341–355 (1976)CrossRefGoogle Scholar
  18. 18.
    Holland, J.H.: Complex adaptive systems. Daedalus 121(1), 17–30 (1992)Google Scholar
  19. 19.
    Jelinek, M., Romme, A.G.L., Boland, R.J.: Introduction to the special issue: organization studies as a science for design: creating collaborative artifacts and research. Organ. Stud. 29(3), 317–329 (2008)Google Scholar
  20. 20.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey (1995)zbMATHGoogle Scholar
  21. 21.
    Kroes, P.: Engineering design. In: Technical Artefacts: Creations of Mind and Matter, pp. 127–161. Springer, Heidelberg (2012)Google Scholar
  22. 22.
    Kroes, P., Franssen, M., Van De Poel, I., Ottens, M.: Treating socio-technical systems as engineering systems : some conceptual problems. Syst. Res. Behav. Sci. 814, 803–815 (2006)CrossRefGoogle Scholar
  23. 23.
    Melgarejo, M., Obregon, N.: Diseño de modelos complejos para la simulación de sistemas socio-técnicos. Educación y humanismo 19(33) (2017)Google Scholar
  24. 24.
    Mendel, J.: Computing with words: Zadeh, Turing, Popper and Occam. IEEE Comput. Intell. Mag. 2(4), 10–17 (2007)CrossRefGoogle Scholar
  25. 25.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Systems. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  26. 26.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press (2009)Google Scholar
  27. 27.
    Nicolis, G., Nicolis, C.: Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, Information and Prediction. World Scientific Publishing Co., London, UK (2007)CrossRefGoogle Scholar
  28. 28.
    Nicolis, G., Nicolis, C.: Foundations of complex systems. Eur. Rev. 17, 237 (2009)CrossRefGoogle Scholar
  29. 29.
    Olaya, C., Gómez-quintero, J., Salas, D.: Ontology in action : urban mobility as evolving knowledge. In: 24th Annual Conference of the European Association for Evolutionary Political Economy. Cracow, Poland (2012)Google Scholar
  30. 30.
    Pahl-Wostl, C.: The implications of complexity for integrated resources management. Environ. Model. Softw. 22(5), 561–569 (2007)CrossRefGoogle Scholar
  31. 31.
    Rescher, N.: Process philosphy. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy (2008)Google Scholar
  32. 32.
    Riveros Varela, C.A., Beltran Velandia, F., Melgarejo Rey, M.A., Gonzalez Romero, N., Obregon Neira, N.: Foraging multi-agent system simulation based on attachment theory. In: Sanayei, A., Rössler, O.E., Zelinka, I. (eds.) ISCS 2014: Interdisciplinary Symposium on Complex Systems, pp. 359–364. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  33. 33.
    Rzevski, G.: Modelling large complex systems using multi-agent technology. In: 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 434–437 (2012)Google Scholar
  34. 34.
    Schwaninger, M., Ambroz, K., Olaya, C.: The complexity challenge: a case for model-based management . In: Proceedings of the 2007 International Conference of the System Dynamics Society, pp. 1–29 (2007)Google Scholar
  35. 35.
    Sice, P., French, I.: A holistic frame-of-reference for modelling social systems. Kybernetes 35(6), 851–864 (2006)CrossRefGoogle Scholar
  36. 36.
    Sun, R.: Cognitive science meets multi-agent systems: a prolegomenon. Philos. Psychol. 14(1), 5–28 (2001)CrossRefGoogle Scholar
  37. 37.
    Torrens, P.M., Nara, A.: Modeling gentrification dynamics: a hybrid approach. Comput. Environ. Urban Syst. 31(3), 337–361 (2007)CrossRefGoogle Scholar
  38. 38.
    Van Delden, H., Seppelt, R., White, R., Jakeman, A.J.: A methodology for the design and development of integrated models for policy support. Environ. Model. Softw. 26(3), 266–279 (2011)CrossRefGoogle Scholar
  39. 39.
    Voinov, A., Bousquet, F.: Modelling with stakeholders. Environ. Model. Softw. 25(11), 1268–1281 (2010)CrossRefGoogle Scholar
  40. 40.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations