Combinatorial Designs on Constraint Satisfaction Problem (VRP)

  • Juan A. Montesino-Guerra
  • Héctor Puga
  • J. Martín CarpioEmail author
  • Manuel Ornelas-Rodríguez
  • A. Rojas-Domínguez
  • Lucero Ortiz-Aguilar
Part of the Studies in Computational Intelligence book series (SCI, volume 862)


The constraint satisfaction problems (CSP) often show great complexity and require a combination of heuristic methods and combinatorial search to be solved in a reasonable time. Therefore, they are of particular importance in the area of intelligent systems. A proposal of a methodology for solving CSP problems is presented, in which the characteristics of combinatorial designs based on algebraic structures, such as Mutually Orthogonal Latin Squares, are exploited in the search for solutions (answers) to a CSP problem. The proposal and the set of heuristics associated with the combinatorial design are evaluated, looking for the pair of heuristics with the best performance in the set of artificial instances of the vehicle routing problem (VRP). The results show the usefulness of the combinatorial designs to find solutions that resolve artificial instances and support the feasibility to extend its application on instances of the state-of-the-art and later on different problem domains.


Constraint satisfaction problem CSP Combinatorial designs Latin squares Mutually orthogonal latin squares MOLS Metaheuristics Iterated local search 



The authors acknowledge the support provided by the National Council of Science and Technology of Mexico (CONACYT), through the Postgraduate Scholarships: 446105 (J. A. Montesino), 446106 ( M. Ortiz) and the Research Grant CÁTEDRAS-2598 (A. Rojas). We also wish to thank the National Technological Institute of Mexico for providing facilities for our Doctoral studies in Computer Sciences (J.A. Montesino and L. de M. Ortiz).


  1. 1.
    Colborne, C.J., Van Oorschot, P.C.: Applications of combinatorial designs in computer science. ACM Computing Surveys (CSUR), June 1989 21(2), pp. 223–250. New York, NY, USA (1988)Google Scholar
  2. 2.
    Bose, R.C.: On the construction of balanced incomplete block designs. Ann. Eugen. 9, 358–399 (1939) Raj Chandra BoseMathSciNetCrossRefGoogle Scholar
  3. 3.
    Stison, D.R.: Combinatorial Designs, Constructions and Analysis. Springer, New York (2004). ISBN 0-387-95487-2Google Scholar
  4. 4.
    Keedwell, D., Dénes, J.: Latin Squares and their Applications, 2nd edn. Elsevier. ISBN 978-0-444-63555-6 (2015)Google Scholar
  5. 5.
    Tang, J.: Latin Squares and Their Applications. N.p.: n.p. (2009). Web. 1 Ago. 2018.
  6. 6.
    Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput. Sci. 200(1), 185–204 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–l18 (1977)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Comellas, F., Fábrega, J., Sánchez, A., Serra, O.: Matemática Discreta. ED UPC. Translation by Andreu, M. (2001) ISBN 84-8301-456-4Google Scholar
  9. 9.
    Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 INFORMS, Oct 1959MathSciNetCrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  11. 11.
    CVRPLIB (07–02–2019) Capacitated Vehicle Routing Problem Library. Recovered from
  12. 12.
    Polya, G.: How to Solve It: A New Aspect of Mathematical Method, 2nd edn. Princeton University Press, Nov 1971Google Scholar
  13. 13.
    Tonge, F.M.: The use of heuristic programming in management science 151; a survey of the literature. Manage. Sci. 7, 231, 237, Apr 1961Google Scholar
  14. 14.
    Misevicius, A.B.A.: Combining 2-opt, 3-opt and 4-opt with k-swap-kick perturbations for the traveling salesman problem. In Information Technologies 2011: Proceedings of the 17th International Conference on Information and Software Technologies, IT 2011, pp. 45, 50. Technologija, Kaunas, Lithuania, Kaunas (2011)Google Scholar
  15. 15.
    Croes, G.A.: A method for solving traveling salesman problems. Oper. Res. 6, 791–812 (1958)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Du, D.Z., Ko, K.I., Hu, X.: Greedy strategy. In: Design and Analysis of Approximation Algorithms. Springer Optimization and Its Applications, vol 62. Springer, New York, NY (2012)Google Scholar
  17. 17.
    M.R.C.: Simulation in Business and Economics, 1st edn. Prentice Hall, Englewood Clis (1969)Google Scholar
  18. 18.
    Michel, G., Jean-Yves, P.: Handbook of Metaheuristics (International Series in Operations Research & Management Science). Springer, Jan 2003Google Scholar
  19. 19.
    Ortiz-Aguilar, L.M.: Diseño de horarios de alumnos y maestros mediante técnicas de Soft Computing, para una Institución Educativa. Master’s thesis, Instituto Tecnológico de León (2016)Google Scholar
  20. 20.
    Soria-Alcaraz Jorge, A., Carpio, M., Puga, H., Sotelo-Figueroa, M.: Methodology of design: a novel generic approach applied to the course timetabling problem. In: Melin, P., Castillo, O. (eds.) Soft Computing Applications in Op-timization, Control, and Recognition, Studies in Fuzziness and Soft Compu-ting, vol. 294, pp. 287–319. Springer, Berlin, Heidelberg (2013)Google Scholar
  21. 21.
    Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juan A. Montesino-Guerra
    • 1
  • Héctor Puga
    • 1
  • J. Martín Carpio
    • 1
    Email author
  • Manuel Ornelas-Rodríguez
    • 1
  • A. Rojas-Domínguez
    • 1
  • Lucero Ortiz-Aguilar
    • 1
  1. 1.División de Estudios de Posgrado e InvestigaciónTecnologico Nacional de México, Instituto Tecnológico de LeónLeón, GuanajuatoMexico

Personalised recommendations