A Survey of Hyper-heuristics for Dynamic Optimization Problems

  • Teodoro Macias-EscobarEmail author
  • Bernabé Dorronsoro
  • Laura Cruz-Reyes
  • Nelson Rangel-Valdez
  • Claudia Gómez-Santillán
Part of the Studies in Computational Intelligence book series (SCI, volume 862)


Dynamic optimization problems have attracted the attention of researchers due to their wide variety of challenges and their suitability for real-world problems. The application of hyper-heuristics to solve optimization problems is another area that has gained interest recently. These algorithms can apply a search space exploration method at different stages of the execution for finding high quality solutions. However, most of the proposed works using these methodologies do not focus on the development of hyper-heuristics for dynamic optimization problems. Despite that, they arise as very appropriate methods for dynamic problems, being highly responsive and able to quickly adapt to any possible changes in the problem environment. In this paper, we present a brief study of the most salient previously proposed hyper-heuristics to solve dynamic optimization problems, and classify them, taking into consideration the complexity of their low-level heuristics. Then, we identify some the most important research areas that have been vaguely explored in the Literature yet.


Dynamic optimization Hyper-heuristics Dynamic optimization problems Low-level heuristics 



This work was supported by the project TecNM 6308.17-P and the following CONACyT projects; Consolidation National Lab under project 280712; Cátedras CONACyT under Project 3058; and CONACyT National Grant System under Grant 465554; Spanish MINECO and ERDF under contracts TIN2014-60844-R (SAVANT project) and RYC-2013-13355, and the University of Cadiz (contract PR2018-056).


  1. 1.
    Ayob, M., Kendall, G.: A monte carlo hyper-heuristic to optimise component placement sequencing for multi head placement machine. In: Proceedings of the International Conference on Intelligent Technologies, InTech, vol. 3, pp. 132–141, Dec 2003Google Scholar
  2. 2.
    Azzouz, R., Bechikh, S., Said, L.B.: Dynamic multi-objective optimization using evolutionary algorithms: a survey. In: Recent Advances in Evolutionary Multi-objective Optimization, pp. 31–70. Springer, Cham (2017)Google Scholar
  3. 3.
    Bai, R., Kendall, G.: An investigation of automated planograms using a simulated annealing based hyper-heuristic. In: Metaheuristics: Progress as Real Problem Solvers, pp. 87–108. Springer, Boston (2005)Google Scholar
  4. 4.
    Bai, R., Blazewicz, J., Burke, E.K., Kendall, G., McCollum, B.: A simulated annealing hyper-heuristic methodology for flexible decision support. Technical Report, School of CSiT, University of Nottingham, UK (2007)Google Scholar
  5. 5.
    Baykasoğlu, A., Ozsoydan, F.B.: Evolutionary and population-based methods versus constructive search strategies in dynamic combinatorial optimization. Inf. Sci. 420, 159–183 (2017)CrossRefGoogle Scholar
  6. 6.
    Baykasoğlu, A., Ozsoydan, F.B.: Dynamic optimization in binary search spaces via weighted superposition attraction algorithm. Expert Syst. Appl. 96, 157–174 (2018)CrossRefGoogle Scholar
  7. 7.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99. vol. 3, pp. 1875–1882. IEEE (1999)Google Scholar
  8. 8.
    Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124 (2016)CrossRefGoogle Scholar
  9. 9.
    Bilgin, B., Özcan, E., Korkmaz, E.E.: An experimental study on hyper-heuristics and exam timetabling. In: International Conference on the Practice and Theory of Automated Timetabling, pp. 394–412. Springer, Berlin (2006)Google Scholar
  10. 10.
    Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classification of hyper-heuristic approaches. In: Handbook of Metaheuristics, pp. 449–468. Springer, Boston (2010)CrossRefGoogle Scholar
  11. 11.
    Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)CrossRefGoogle Scholar
  12. 12.
    Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., & Woodward, J. R. (2018). A classification of hyper-heuristic approaches: revisited. In: Handbook of Metaheuristics, vol. 272, p. 453Google Scholar
  13. 13.
    Chen, Y., Cowling, P., Polack, F., Remde, S., Mourdjis, P.: Dynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage system. Eur. J. Oper. Res. 257(2), 494–510 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: International Conference on the Practice and Theory of Automated Timetabling, pp. 176–190. Springer, Berlin (2000)Google Scholar
  15. 15.
    Davis, L.: Bit-climbing, representational bias, and test suite design. In: Proceedings of the 4th International Conference on Genetic Algorithm, pp. 18–23 (1991)Google Scholar
  16. 16.
    Deb, K., Rao U.B., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 803–817. Springer, Berlin (2007)Google Scholar
  17. 17.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)CrossRefGoogle Scholar
  18. 18.
    Fialho, Á.: Adaptive operator selection for optimization. Doctoral dissertation, Université Paris Sud-Paris XI (2010)Google Scholar
  19. 19.
    Garrido, P., Riff, M.C.: DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic. J. Heuristics 16(6), 795–834 (2010)CrossRefGoogle Scholar
  20. 20.
    Gökçe, M.A., Beygo, B., Ekmekçi, T.: A hyperheuristic approach for dynamic multilevel capacitated lot sizing with linked lot sizes for APS implementations. J. Yaşar Univ. 12(45), 1–13 (2017)Google Scholar
  21. 21.
    Grobler, J., Engelbrecht, A.P., Kendall, G., Yadavalli, V.S.S.: Alternative hyper-heuristic strategies for multi-method global optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, IEEE, July 2010Google Scholar
  22. 22.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)CrossRefGoogle Scholar
  23. 23.
    Kendall, G., Mohamad, M.: Channel assignment in cellular communication using a great deluge hyper-heuristic. In: Proceedings. 12th IEEE International Conference on Networks (ICON 2004), vol. 2, pp. 769–773. IEEE, Nov 2004Google Scholar
  24. 24.
    Kilby, P., Prosser, P., Shaw, P.: Dynamic VRPs: a study of scenarios, pp. 1–11. Technical Report, University of Strathclyde (1998)Google Scholar
  25. 25.
    Kiraz, B., Topcuoglu, H.R.: Hyper-heuristic approaches for the dynamic generalized assignment problem. In: 2010 10th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 1487–1492, IEEE, Nov 2010Google Scholar
  26. 26.
    Kiraz, B., Uyar, A.Ş., Özcan, E.: An investigation of selection hyper-heuristics in dynamic environments. In: European Conference on the Applications of Evolutionary Computation, pp. 314–323. Springer, Berlin (2011)CrossRefGoogle Scholar
  27. 27.
    Kiraz, B., Etaner-Uyar, A.Ş., Özcan, E.: Selection hyper-heuristics in dynamic environments. J. Oper. Res. Soc. 64(12), 1753–1769 (2013)CrossRefGoogle Scholar
  28. 28.
    Kiraz, B., Etaner-Uyar, A.Ş., Özcan, E.: An ant-based selection hyper-heuristic for dynamic environments. In: European Conference on the Applications of Evolutionary Computation, pp. 626–635. Springer, Berlin (2013)CrossRefGoogle Scholar
  29. 29.
    Köle, M., Etaner-Uyar, A.Ş., Kiraz, B., Özcan, E. (2012,). Heuristics for car setup optimisation in torcs. In: 2012 12th UK Workshop on Computational Intelligence (UKCI), pp. 1–8, IEEE, Sept 2012Google Scholar
  30. 30.
    Loiacono, D., Cardamone, L., Lanzi, P.L.: Simulated car racing championship competition software manual (2011)Google Scholar
  31. 31.
    Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. Wiley-Interscience series in discrete mathematics and optimization, (1990)Google Scholar
  32. 32.
    Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)CrossRefGoogle Scholar
  33. 33.
    Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey with a unified framework. Complex. Intell. Syst. 3(1), 41–66 (2017)CrossRefGoogle Scholar
  34. 34.
    Ozcan, E., Uyar, S.E., Burke, E.: A greedy hyper-heuristic in dynamic environments. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp. 2201–2204. ACM, July 2009Google Scholar
  35. 35.
    Remde, S., Dahal, K., Cowling, P., Colledge, N.: Binary exponential back off for tabu tenure in hyperheuristics. In: European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 109–120. Springer, Berlin (2009)CrossRefGoogle Scholar
  36. 36.
    Richter, H.: Dynamic fitness landscape analysis. In: Evolutionary Computation for Dynamic Optimization Problems, pp. 269–297. Springer, Berlin (2013)Google Scholar
  37. 37.
    Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Automatic design of a hyper-heuristic framework with gene expression programming for combinatorial optimization problems. IEEE Trans. Evol. Comput. 19(3), 309–325 (2015)CrossRefGoogle Scholar
  38. 38.
    Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems. IEEE Trans. Cybern. 45(2), 217–228 (2015)CrossRefGoogle Scholar
  39. 39.
    Soria-Alcaraz, J.A., Ochoa, G., Sotelo-Figeroa, M.A., Burke, E.K.: A methodology for determining an effective subset of heuristics in selection hyper-heuristics. Eur. J. Oper. Res. 260(3), 972–983 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Soria-Alcaraz, J.A., Espinal, A., Sotelo-Figueroa, M.A.: Evolvability metric estimation by a parallel perceptron for on-line selection hyper-heuristics. IEEE Access. 5, 7055–7063 (2017)CrossRefGoogle Scholar
  41. 41.
    Topcuoglu, H.R., Ucar, A., Altin, L.: A hyper-heuristic based framework for dynamic optimization problems. Appl. Soft Comput. 19, 236–251 (2014)CrossRefGoogle Scholar
  42. 42.
    Uludağ, G., Kiraz, B., Etaner-Uyar, A.Ş., Özcan, E.: A Framework to Hybridize PBIL and a Hyper-heuristic for Dynamic Environments. In: International Conference on Parallel Problem Solving from Nature, pp. 358–367. Springer, Berlin (2012)Google Scholar
  43. 43.
    Uludag, G., Kiraz, B., Etaner-Uyar, A.S., Ozcan, E.: Heuristic selection in a multi-phase hybrid approach for dynamic environments. In: UKCI, pp. 1–8, Sept (2012)Google Scholar
  44. 44.
    Uludağ, G., Kiraz, B., Etaner-Uyar, A.Ş., Özcan, E.: A hybrid multi-population framework for dynamic environments combining online and offline learning. Soft. Comput. 17(12), 2327–2348 (2013)CrossRefGoogle Scholar
  45. 45.
    van der Stockt, S., Engelbrecht, A.P.: Analysis of hyper-heuristic performance in different dynamic environments. In: 2014 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), pp. 1–8. IEEE, Dec 2014Google Scholar
  46. 46.
    van der Stockt, S., Engelbrecht, A.P.: Analysis of global information sharing in hyper-heuristics for different dynamic environments. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 822–829. IEEE, May 2015Google Scholar
  47. 47.
    van der Stockt, S.A., Engelbrecht, A.P.: Analysis of selection hyper-heuristics for population-based meta-heuristics in real-valued dynamic optimization. Swarm Evol. Comput. (2018)Google Scholar
  48. 48.
    Wang, H., Wang, D., Yang, S.: A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft. Comput. 13(8–9), 763–780 (2009)CrossRefGoogle Scholar
  49. 49.
    Wang, M., Li, B., Zhang, G., Yao, X.: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms. IEEE Trans. Evol. Comput. (2017)Google Scholar
  50. 50.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  51. 51.
    Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft. Comput. 9(11), 815–834 (2005)CrossRefGoogle Scholar
  52. 52.
    Yang, S., Yao, X.: Population-based incremental learning with associative memory for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Teodoro Macias-Escobar
    • 1
    • 2
    Email author
  • Bernabé Dorronsoro
    • 2
  • Laura Cruz-Reyes
    • 3
  • Nelson Rangel-Valdez
    • 3
  • Claudia Gómez-Santillán
    • 3
  1. 1.Tecnológico Nacional de MéxicoInstituto Tecnológico de TijuanaTijuanaMexico
  2. 2.Universidad de CádizCadizSpain
  3. 3.Tecnológico Nacional de MéxicoInstituto Tecnológico de Ciudad MaderoCiudad MaderoMexico

Personalised recommendations