Advertisement

Applying Fuzzy Logic to Identify Heterogeneity of the Allometric Response in Arithmetical Space

  • Cecilia Leal-Ramírez
  • Héctor Echavarría-HerasEmail author
  • Enrique Villa-Diharce
Chapter
  • 39 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 862)

Abstract

Customary approaches in allometric examination include linear regression in geometrical space, as well as, nonlinear regression in the original scale of data. These protocols could not produce consistent results in a circumstance in which the allometric response manifest heterogeneity as the covariate changes. The paradigm of log-nonlinear allometry offers a mechanism for the analysis of heterogeneity in geometric space. However, the use of a logarithmic transformation in allometry is controversial. In this contribution, we present a fuzzy approach aimed to examination of allometric heterogeneity in direct arithmetical space. Offered construct relies on a hybrid procedure integrating crisp cluster analysis and a fuzzy inference system of Mamdani type. Calibration aims depended on an extensive data set composing measurements of eelgrass leaf biomass and their corresponding areas. Results on raw data suggest heterogeneity more clearly manifest in the normalization constant than in the allometric exponent. Nevertheless, differences in normalization constant values among clusters are only slight for data remaining after removal of inconsistent replicates. This suggests heterogeneity produced by intrinsic factors of leaf growth.

Keywords

Allometry Heterogeneity Mamdani type fuzzy model Average leaf biomass eelgrass 

References

  1. 1.
    Newman, M.E.J.: Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)CrossRefGoogle Scholar
  2. 2.
    Marquet, P.A., Quiñones, R.A., Abades, S., Labra, F., Tognelli, M.: Scaling and power-laws in ecological systems. J. Exp. Biol. 208, 1749–1769 (2005)CrossRefGoogle Scholar
  3. 3.
    West, G.B., Brown, J.H.: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005)CrossRefGoogle Scholar
  4. 4.
    Maritan, A., Rigon, R., Banavar, J.R., Rinaldo, A.: Network allometry. Geophys. Res. Lett. 29(11), 1–4 (2002)CrossRefGoogle Scholar
  5. 5.
    Filgueira, R., Labarta, U., Fernández-Reiriz, M.J.: Effect of condition index on allometric relationships of clearance rate in mytilus galloprovincialis lamarck, 1819. Rev. Biol. Mar. Oceanogr. 43(2), 391–398 (2008)CrossRefGoogle Scholar
  6. 6.
    Kaitaniemi, P.: How to derive biological information from the value of the normalization constant in allometric equations. PLoS One 3(4), e1932 (2008)CrossRefGoogle Scholar
  7. 7.
    Martin, R.D., Genoud, M., Hemelrijk, C.K.: Problems of allometric scaling analysis: examples from mammalian reproductive Biology. J. Exp. Biol. 208, 1731–1747 (2005)CrossRefGoogle Scholar
  8. 8.
    De Robertis, A., Williams, K.: Weight-length relationships in fisheries studies: the standard allometric model should be applied with caution. Trans. Am. Fish. Soc. 137(3), 707–719 (2008)CrossRefGoogle Scholar
  9. 9.
    Echavarría-Heras, H.A., Leal-Ramírez, C., Villa-Diharce, E., Cazarez-Castro, N.R.: The effect of parameter variability in the allometric projection of leaf growth rates for eelgrass (Zostera marina L.) II: the importance of data quality control procedures in bias reduction. Theor. Biol. Med. Model. 12(30) (2015)Google Scholar
  10. 10.
    García-Soria, D., Abanto-Rodriguez, A., Del Castillo, D.: Determinación de ecuaciones alométricas para la estimación de biomasa aérea de Guadua sacocarpa Lodoño & Peterson de la comunidad nativa bufeo pozo, Ucayali, Perú. Folia Amazonica 24(2) 139–144 (2015)Google Scholar
  11. 11.
    Echavarría Heras, H.A., Leal Ramírez, C., Villa Diharce, E., Cazarez Castro, N.R.: On the suitability of an allometric proxy for nondestructive estimation of average leaf dry weight in eelgrass shoots I: sensitivity analysis and examination of the influences of data quality, analysis method, and sample size on precision. Theoret. Biol. Med. Model. 15(4), 20 (2018)Google Scholar
  12. 12.
    Solana-Arellano, M.E., Echavarría-Heras, H.A., Leal-Ramírez, C., Lee, K.S.: The effect of parameter variability in the allometric projection of leaf growth rates for eelgrass (Zostera marina L.). Lat. Am. J. Aquat. Res. 42(5), 1099–108 (2014)CrossRefGoogle Scholar
  13. 13.
    Echavarría-Heras, H.A., Lee, K.S., Solana-Arellano, M.E., Franco-Vizcaino, E.: Formal analysis and evaluation of allometric methods for estimating above-ground biomass of eelgrass. Ann. Appl. Biol. 159(3), 503–515 (2011)CrossRefGoogle Scholar
  14. 14.
    Echavarría-Heras, H.A., Solana-Arellano, M.E., Franco-Vizcaino, E.: An allometric method for the projection of eelgrass leaf biomass production rates. Math. Biosci. 223(1), 58–65 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Savage, V.M., Gillooly, J.F., Woodruff, W.H., West, G.B., Allen, A.P.: The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004)CrossRefGoogle Scholar
  16. 16.
    Hui, D., Jackson, R.B.: Uncertainty in allometric exponent estimation: a case study in scaling metabolic rate with body mass. J. Theor. Biol. 249, 168–177 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Packard, G.C., Birchard, G.F.: Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J. Exp. Biol. 211, 3581–3587 (2008)CrossRefGoogle Scholar
  18. 18.
    Packard, G.C.: Is non-loglinear allometry a statistical artifact? Biol. J. Lin. Soc. 107(4), 764–773 (2012)CrossRefGoogle Scholar
  19. 19.
    Hartnoll, R.G.: The determination of relative growth in Crustacea. Crustaceana 34(3), 282–293 (1978)CrossRefGoogle Scholar
  20. 20.
    Barradas, J.R.S., Lermen, I.S., Larre, G.G., Martins, T.P., Fontura, N.F.: Polyphasic growth in fish: a case study with Corydoras paleatus (Siluriformes, Callichthyidae). Ser. Zool, Iheringia (2016)Google Scholar
  21. 21.
    Packard, G.C., Boardman, T.J.: Model selection and logarithmic transformation in allometric analysis. Physiol. Biochem. Zool. 81, 496–507 (2008)CrossRefGoogle Scholar
  22. 22.
    Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)CrossRefGoogle Scholar
  23. 23.
    Zimmerman, H.J.: Fuzzy Set Theory and Its Applications, 2nd edn. Kluwer, Boston MA (1991)CrossRefGoogle Scholar
  24. 24.
    Takagi, T., Sugeno, M.: Fuzzy identifications of systems and its applications to modeling and control. IEE Trans Syst. MAN Cybern. 15(1), 116–132 (1985)CrossRefGoogle Scholar
  25. 25.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bezdek, J.C., Pal, S.K.: Fuzzy Models for Pattern Recognition. IEEE Press, New York (1992)Google Scholar
  27. 27.
    Echavarría-Heras, H.A., Leal-Ramírez, C., Castro-Rodriguez, J.R., Villa-Diharce, E., Castillo, O.: A Takagi-Sugeno-Kang fuzzy model formalization of eelgrass leaf biomass allometry with application to the estimation of average biomass of leaves in shoots: comparing the reproducibility strength of the present fuzzy and related crisp proxies. In: Castillo, O., Melin, P., Kacprzyk, P. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, 2nd edn. Springer, Berlin (2018)Google Scholar
  28. 28.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy. Syst. 4(2), 103–111 (1996)CrossRefGoogle Scholar
  29. 29.
    Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. The MIT Press, Massachusetts (1998)CrossRefGoogle Scholar
  30. 30.
    Barros, L.C., Bassanezi, R.C.: Tópicos em lógica fuzzy e biomatemática, 2nd edn., p. 344. UNICAMP/IMECC, Campinas (2010)Google Scholar
  31. 31.
    Lin, L.I.K.: A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268 (1989)CrossRefGoogle Scholar
  32. 32.
    Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Networks. 3(5), 807–814 (1992)CrossRefGoogle Scholar
  33. 33.
    Bitar, S.D., Campos, C.P., Freitas, C.E.C.: Applying fuzzy logic to estimate the parameters of the length-weight relationship. Braz. J. Biol. 1–8 (2016)Google Scholar
  34. 34.
    Mascaro, J., Litton, C.M., Hughes, R.F., Uowolo, A., Schnitzer, S.A.: Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol. J. Linn. Soc. 111, 230–233 (2014)CrossRefGoogle Scholar
  35. 35.
    Echavarría-Heras, H.A., Solana-Arellano, M.E., Leal-Ramírez, C., Franco-Vizcaino, E.: An allometric method for measuring leaf growth in eelgrass, Zostera marina, using leaf length data. Bot. Mar. 56(3), 275–86 (2013)Google Scholar
  36. 36.
    Lai, J., Yang, B., Lin, D., Kerkhoff, A.J, Ma., K.: The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression? PLoS ONE (2013)Google Scholar
  37. 37.
    Xiao, X., White, E.P., Hooten, M.B., Durham, S.L.: On the use of log-transformation vs. non-linear regression for analyzing biological power laws. Ecology 92(10), 1887–1894 (2011)CrossRefGoogle Scholar
  38. 38.
    Jolicoeur, P.: A simplified model for bivariate complex allometry. J. Theor. Biol. 140, 41–49 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Cecilia Leal-Ramírez
    • 1
  • Héctor Echavarría-Heras
    • 1
    Email author
  • Enrique Villa-Diharce
    • 2
  1. 1.Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-TijuanaEnsenadaMexico
  2. 2.Centro de Investigación en MatemáticasA.C. Jalisco s/n, Mineral ValencianaGuanajuato GtoMexico

Personalised recommendations