Advertisement

Evaluation of Parallel Exploration and Exploitation Capabilities in Two PSO Variants with Intra Communication

  • Yunkio KawanoEmail author
  • Fevrier Valdez
  • Oscar Castillo
Chapter
  • 40 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 862)

Abstract

In this chapter, we propose two different PSO variants with parallel communication to balance the exploration and exploitation of the search space. The idea is that combining these two algorithms in parallel which share information between the two is intended to obtain better results than each of the algorithms separately. It should be said that no adaptation of parameters was applied so the results obtained are not the best compared to other works, but among the algorithms used there were significant differences.

Keywords

PSO Parallel PSO-Explore PSO-Exploit 

References

  1. 1.
    Colgan, L.: MATLAB in first-year engineering mathematics. Int. J.Math. Educ. Sci. Technol. 31(1), 15–25 (2000)CrossRefGoogle Scholar
  2. 2.
    Raska, P., Ulrych, Z.: Testing optimization methods on discrete event simulation models and testing functions. Proc. Eng. 69, 768–777 (2014)CrossRefGoogle Scholar
  3. 3.
    Abiyev, R.H., Tunay, M.: Experimental study of specific benchmarking functions for modified monkey algorithm. Proc. Comput. Sci. 102, 595–602 (2016)CrossRefGoogle Scholar
  4. 4.
    Uriarte, A., Melin, P., Valdez, F.: An improved particle swarm optimization algorithm applied to benchmark functions. In: 2016 IEEE 8th International Conference on Intelligent Systems (IS), pp. 128–132 (2016)Google Scholar
  5. 5.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  6. 6.
    Valdez, F.: Bio-inspired optimization methods. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1533–1538. Springer, Berlin, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, pp. 591–600 (1998)Google Scholar
  8. 8.
    Olivas, F., Valdez, F., Castillo, O.: Particle swarm optimization with dynamic parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In 2013 World Congress on Nature and Biologically Inspired Computing, Fargo, ND, USA, pp. 36–40 (2013)Google Scholar
  9. 9.
    Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, US, Boston, MA (2010)Google Scholar
  10. 10.
    Eberhart, Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 1, pp. 81–86, Seoul, South Korea (2001)Google Scholar
  11. 11.
    Ghalia, M.B.: Particle swarm optimization with an improved exploration-exploitation balance. In: 2008 51st Midwest Symposium on Circuits and Systems, pp. 759–762, Knoxville, TN, USA (2008)Google Scholar
  12. 12.
    Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P.: Optimal parameter regions for particle swarm optimization algorithms. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 349–356, Donostia, San Sebastián, Spain (2017)Google Scholar
  13. 13.
    Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 24, 11–24 (2015)CrossRefGoogle Scholar
  14. 14.
    Zhan, Z., Zhang, J., Li, Y., Chung, H.S.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 39(6), 1362–1381 (2009)CrossRefGoogle Scholar
  15. 15.
    Ostadmohammadi, B., Arani, P.M., Shariat Panahi, M.: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol. Comput. 11, 1–15 (2013)CrossRefGoogle Scholar
  16. 16.
    Wakasa, Y., Tanaka, K., Nishimura, Y.: Control-theoretic analysis of exploitation and exploration of the PSO algorithm. In: 2010 IEEE International Symposium on Computer-Aided Control System Design, pp. 1807–1812, Yokohama, Japan (2010)Google Scholar
  17. 17.
    Valdez, F., Melin, P., Castillo, O.: Fuzzy control of parameters to dynamically adapt the PSO and GA algorithms. In: International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–8 (2010)Google Scholar
  18. 18.
    Chen, F., Sun, X., Wei, D., Tang, Y.: Tradeoff strategy between exploration and exploitation for PSO. In: 2011 Seventh International Conference on Natural Computation, Shanghai, China, pp. 1216–1222 (2011)Google Scholar
  19. 19.
    Pohlheim, H.: GEATbx: genetic and evolutionary algorithm toolbox for use with MATLAB version 1.92. User Guide, July 1, 997 (1998)Google Scholar
  20. 20.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)Google Scholar
  21. 21.
    Melin, P., Castillo, O.: Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955 (2001)CrossRefGoogle Scholar
  22. 22.
    Gonzalez, C.I., Melin, P., Castro, J.R., Castillo, O., Mendoza, O.: Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)CrossRefGoogle Scholar
  23. 23.
    Olivas, F., Valdez, F., Castillo, O., Gonzalez, C.I., Martinez, G., Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)CrossRefGoogle Scholar
  24. 24.
    Sanchez, M.A., Castillo, O., Castro, J.R., Melin, P.: Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sánchez, D., Melin, P.: Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. Artif. Intell. 27, 41–56 (2014)CrossRefGoogle Scholar
  26. 26.
    Sanchez, M.A., Castro, J.R., Castillo, O., Mendoza, O., Rodriguez-Diaz, A., Melin, P.: Fuzzy higher type information granules from an uncertainty measurement. Granul. Comput. 2(2), 95–103 (2017)CrossRefGoogle Scholar
  27. 27.
    Gaxiola, F., Melin, P., Valdez, F., Castro, J.R., Castillo, O.: Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Appl. Soft Comput. 38, 860–871 (2016)CrossRefGoogle Scholar
  28. 28.
    Castillo, O., Castro, J.R., Melin, P., Rodriguez-Diaz, A.: Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput. 18(6), 1213–1224 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Tijuana Institute of TechTijuanaMexico

Personalised recommendations