Harmony Search with Dynamic Adaptation of Parameters for the Optimization of a Benchmark Controller

  • Cinthia Peraza
  • Fevrier ValdezEmail author
  • Oscar Castillo
Part of the Studies in Computational Intelligence book series (SCI, volume 862)


A fuzzy harmony search algorithm (FHS) is presented in this paper. This method uses a fuzzy system for dynamic adaptation of the harmony memory accepting (HMR) and pitch adjustment (PArate) parameters along the iterations, and in this way achieving control of the intensification and diversification of the search space. This method was previously applied to various benchmark controller cases however in this case we decided to apply the proposed FHS to benchmark controller problem with different types of noise: band-limited white noise, pulse noise, and uniform random number noise to check the efficiency for the pro-posed method. A comparison is presented to verify the results obtained with the original harmony search algorithm and fuzzy harmony search algorithm.


Harmony search Fuzzy logic Dynamic parameter adaptation Fuzzy controller Benchmark problem 



We would like to express our thanks to CONACYT and Tijuana Institute of Technology for the facilities and resources granted for the development of this research.


  1. 1.
    Geem, Z.W., Kim, Z.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  2. 2.
    Kar, P., Swain, S.C.: A Harmony Search-Firefly Algorithm Based Controller for Damping Power Oscillations, pp. 351–355 (2016)Google Scholar
  3. 3.
    Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)CrossRefGoogle Scholar
  4. 4.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100, 9–34 (1999)CrossRefGoogle Scholar
  6. 6.
    Castillo, O., Valdez, F., Soria, J., Amador-Angulo, L., Ochoa, P., Peraza, C.: Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms. Algorithms 12(1), 9 (2018)CrossRefGoogle Scholar
  7. 7.
    Ochoa, P., Castillo, O., Soria, J.: A new approach for dynamic mutation parameter in the differential evolution algorithm using fuzzy logic. In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds.) Fuzzy Logic in Intelligent System Design, vol. 648, pp. 85–93. Springer, Cham (2018)CrossRefGoogle Scholar
  8. 8.
    Bernal, E., Castillo, O., Soria, J., Valdez, F.: Optimization of fuzzy controller using galactic swarm optimization with type-2 fuzzy dynamic parameter adjustment. Axioms 8(1), 26 (2019)CrossRefGoogle Scholar
  9. 9.
    Barraza, J., Rodríguez, L., Castillo, O., Melin, P., Valdez, F.: A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm. J. Optim. 2018, 1–18 (2018)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Rodríguez, L., Castillo, O., García, M., Soria, J.: A comparative study of dynamic adaptation of parameters in the GWO algorithm using type-1 and interval type-2 fuzzy logic. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, vol. 749, pp. 3–16. Springer, Cham (2018)Google Scholar
  11. 11.
    Al-Betar, M.A., Awadallah, M.A., Khader, A.T., Bolaji, A.L., Almomani, A.: Economic load dispatch problems with valve-point loading using natural updated harmony search. Neural Comput. Appl. 29(10), 767–781 (2018)CrossRefGoogle Scholar
  12. 12.
    Alia, O.M.: Dynamic relocation of mobile base station in wireless sensor networks using a cluster-based harmony search algorithm. Inf. Sci. 385–386, 76–95 (2017)CrossRefGoogle Scholar
  13. 13.
    Brinda, M.D., Suresh, A., Rashmi, M.R.: Optimal sizing and distribution system reconfiguration of hybrid FC/WT/PV system using cluster computing based on harmony search algorithm. Clust, Comput (2018)Google Scholar
  14. 14.
    Chao, F., Zhou, D., Lin, C.-M., Zhou, C., Shi, M., Lin, D.: Fuzzy cerebellar model articulation controller network optimization via self-adaptive global best harmony search algorithm. Soft. Comput. 22(10), 3141–3153 (2018)CrossRefGoogle Scholar
  15. 15.
    Peraza, C., Valdez, F., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in the Harmony search algorithm, pp. 106–112 (2016)Google Scholar
  16. 16.
    Peraza, C., Valdez, F., Garcia, M., Melin, P., Castillo, O.: A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms 9(4), 69 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Peraza, C., Valdez, F., Castillo, O.: An adaptive fuzzy control based on harmony search and its application to optimization. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems, vol. 667, pp. 269–283. Springer, Cham (2017)CrossRefGoogle Scholar
  18. 18.
    Peraza, C., Valdez, F., Melin, P.: Optimization of intelligent controllers using a type-1 and interval type-2 fuzzy harmony search algorithm. Algorithms 10(3), 82 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Peraza, C., Valdez, F., Castro, J.R., Castillo, O.: Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller. Adv. Oper. Res. 2018, 1–16 (2018)CrossRefGoogle Scholar
  20. 20.
    Castillo, O., et al.: Shadowed type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms 12(1), 17 (2019)CrossRefGoogle Scholar
  21. 21.
    Sanchez, M.A., Castillo, O., Castro, J.R.: Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 42(14), 5904–5914 (2015)CrossRefGoogle Scholar
  22. 22.
    Melin, P., Castillo, O.: Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Industr. Electron. 48(5), 951–955 (2001)CrossRefGoogle Scholar
  23. 23.
    Gonzalez, C.I., Melin, P., Castro, J.R., Castillo, O., Mendoza, O.: Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)CrossRefGoogle Scholar
  24. 24.
    Olivas, F., Valdez, F., Castillo, O., Gonzalez, C.I., Martinez, G., Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)CrossRefGoogle Scholar
  25. 25.
    Gaxiola, F., Melin, P., Valdez, F., Castro, J.R., Castillo, O.: Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Appl. Soft Comput. 38, 860–871 (2016)CrossRefGoogle Scholar
  26. 26.
    Castillo, O., Castro, J.R., Melin, P., Rodriguez-Diaz, A.: Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft. Comput. 18(6), 1213–1224 (2014)CrossRefGoogle Scholar
  27. 27.
    Castro, J.R., Castillo, O., Melin, P., Rodríguez Díaz, A.: Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox. Trans. Comput. Sci. 1, 104–114 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Cinthia Peraza
    • 1
  • Fevrier Valdez
    • 1
    Email author
  • Oscar Castillo
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations