Image Semantic Segmentation Based on Convolutional Neural Networks for Monitoring Agricultural Vegetation

  • Valentin GanchenkoEmail author
  • Alexander Doudkin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1055)


This paper considers problem of recognition agricultural vegetation state from aerial photographs of various spatial resolutions. Semantic segmentation based on convolutional neural networks is used as a basis for recognition. Two neural networks with SegNet and U-Net architectures are presented and investigated for this aim.


Convolutional neural network Semantic segmentation Aerial photograph Agricultural vegetation 


  1. 1.
    Belyayev, B.I., Katkovskiy, L.V.: Optical remote sensing, 455 p. BSU, Minsk (2006). [in Russian]Google Scholar
  2. 2.
    Schowengerdt, R.A.: Remote Sensing. Models and Methods for Image Processing, 3rd edn, 558 p. Academic Press (2007)Google Scholar
  3. 3.
    Chao, К., Chen, Y.R., Kim, M.S.: Machine vision technology for agricultural applications. Trans. Comput. Electron. Agric. 36, 173–191 (2002). Elsevier scienceCrossRefGoogle Scholar
  4. 4.
    Kumar, N., et al.: Do leaf surface’ characteristics affect agrobacterium infection in tea [camellia sinensis (1.)]. J. Biosci. 29(3), 309–317 (2004)CrossRefGoogle Scholar
  5. 5.
    Wu, L., et al.: Identification of weed, corn using BP network based on wavelet features and fractal dimension. Sci. Res. Essay 4(11), 1194–1400 (2009)Google Scholar
  6. 6.
    Qin, Z., Zhang, M.: Detection of rice sheath blight for in-season disease management using multispectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 7, 115–148 (2005)CrossRefGoogle Scholar
  7. 7.
    Aksoy, S., Akcay, H.G., Wassenaar, T.: Automatic mapping of linear woody vegetation features in agricultural landscapes using very high-resolution imagery. IEEE Trans. Geosci. Remote Sens. 48(1, 2), 511–522 (2010)CrossRefGoogle Scholar
  8. 8.
    Abdullahi, H.S., Zubair, O.M.: Advances of image processing in precision agriculture: using deep learning convolution neural network for soil nutrient classification. J. Multidisciplinary Eng. Sci. Technol. (JMEST) 4(8), 7981–7987 (2017)Google Scholar
  9. 9.
    Wright, D., Rasmussen, V., Ramsey, R., Baker, D., Ellsworth, J.: Canopy reflectance estimation of wheat nitrogen content for grain protein management. GISci. Remote Sens. 41(4), 287–300 (2004)CrossRefGoogle Scholar
  10. 10.
    Khobragade, A., Pooja, M.G., Singh, R.K.: Feature extraction algorithm for estimation of agriculture acreage from remote sensing images, pp. 5–9 (2016)Google Scholar
  11. 11.
    Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., Zhang, L.: A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 13(4), e0196302 (2018)CrossRefGoogle Scholar
  12. 12.
    Sa, I., et al.: weedNet: dense semantic weed classification using multispectral images and MAV for smart farming. IEEE Robot. Autom. Lett. 3(1), 588–595 (2018)CrossRefGoogle Scholar
  13. 13.
    Potena, C., Nardi, D., Pretto, A.: Fast and accurate crop and weed identification with summarized train sets for precision agriculture. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds.) IAS 2016. AISC, vol. 531, pp. 105–121. Springer, Cham (2017). Scholar
  14. 14.
    Dias, P.A., Tabb, A., Medeiros, H.: Multispecies fruit flower detection using a refined semantic segmentation network. IEEE Robot. Autom. Lett. 3(4), 3003–3010 (2018)CrossRefGoogle Scholar
  15. 15.
    Bargoti, S., Underwood, J.P.: Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34(6), 1039–1060 (2017)CrossRefGoogle Scholar
  16. 16.
    Zhang, C., et al.: Segmentation model based on convolutional neural networks for extracting vegetation from Gaofen-2 images. J. Appl. Remote Sens. 12(4), 042804 (2018)Google Scholar
  17. 17.
    Lin, K., Gong, L., Huang, Y., Liu, C., Pan, J.: Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. J. Front. Plant Sci. 10, 10 p (2019). Article 155Google Scholar
  18. 18.
    Xu, L., Ming, D., Zhou, W., Bao, H., Chen, Y., Ling, X.: Farmland extraction from high spatial resolution remote sensing images based on stratified scale pre-estimation. J. Remote Sens. 11(2), 10–19 (2019)Google Scholar
  19. 19.
    Sobkowiak, B., et al.: Zastosowanie technik analizy obrazu do wczesnego wykrywania patogenow ziemniaka. Praca nie publicowana. PIMR, Poznan (2006)Google Scholar
  20. 20.
    Sobkowiak, B., et al.: Zastosowanie technik analizy obrazu do wczesnego wykrywania zarazy ziemnechanej w warynkach polowych. Praca nie publicowana. PIMR, Poznan (2007)Google Scholar
  21. 21.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, 800 p. The MIT Press (2016)Google Scholar
  22. 22.
    Nikolenko, S, Kadurin, A., Archangelskaya, E.: Deep Learning, 480 p. Piter, Saint Petersburg (2018). (in Russian)Google Scholar
  23. 23.
  24. 24.
    Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.United Institute of Informatics ProblemsMinskBelarus

Personalised recommendations