Semantic-Based Linguistic Platform for Big Data Processing
Conference paper
First Online:
Abstract
The paper deals with the development of a semantic-based linguistic platform. Special attention is paid to semantic patterns.
Keywords
Big data Natural language processing Semantic patterns Ontology-based approachReferences
- 1.Simon, Ph.: Too Big to Ignore: The Business Case for Big Data, 256 p. Wiley, Hoboken (2015)Google Scholar
- 2.Davenport, Th.: Big Data at Work: Dispelling the Myths, Uncovering the Opportunities, 228 p. Harvard Business Review Press, Boston (2014)Google Scholar
- 3.Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution that will Transform How We Live, Work, and Think, 242 p. Houghton Mifflin Harcourt, Boston (2013)Google Scholar
- 4.Marr, B.: Big Data - Using SMART Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance, 256 p. Wiley, Hoboken (2015)Google Scholar
- 5.Marr, B.: Data Strategy: How to Profit from a World of Big Data, Analytics and the Internet of Things, 200 p. Kogan Page, London (2017)Google Scholar
- 6.Moens, M.: Information Extraction: Algorithms and Prospects in a Retrieval Context, 246 p. Springer, Berlin (2006)Google Scholar
- 7.Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: the Concepts and Technology Behind Search. Addison-Wesley Professional, Boston, 944 p. (2011)Google Scholar
- 8.Buettcher, S., Clarke, C., Cormack, G.: Information Retrieval: Implementing and Evaluating Search Engines, 632 p. MIT Press, Cambridge (2010)Google Scholar
- 9.Machová, K., Bednár, P., Mach, M.: Various approaches to web information processing. Comput. Inf. 26, 301–327 (2007)zbMATHGoogle Scholar
- 10.Khoo, C., Myaeng, S.H.: Identifying semantic relations in text for information retrieval and information extraction. In: Green, R., Bean, C.A., Myaeng, S.H. (eds.) The Semantics of Relationships. Information Science and Knowledge Management. ISKM, vol. 3, pp. 161–180. Springer, Berlin (2002). https://doi.org/10.1007/978-94-017-0073-3_10CrossRefGoogle Scholar
- 11.Bobkov, A., Gafurov, S., Krasnoproshin, V., Romanchik, V., Vissia, H.: Information extraction based on semantic patterns. In: Proceedings of the 12-th International Conference – PRIP 2014, Minsk, pp. 30–35 (2014)Google Scholar
- 12.Barnbrook, G., Mason, O., Krishnamurthy, R.: Collocation: Applications and Implications, 254 p. Palgrave Macmillan, London (2013)CrossRefGoogle Scholar
- 13.Cruse, D.A.: Lexical Semantics, 310 p. Cambridge University Press, Cambridge (1986)Google Scholar
- 14.Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing, 620 p. MIT Press, Cambridge (1999)Google Scholar
- 15.Bilan, V., Bobkov, A., Gafurov, S., Krasnoproshin, V., van de Laar, J., Vissia, H.: An ontology-based approach to opinion mining. In: Proceedings of 10-th International Conference PRIP 2009, Minsk, pp. 257–259 (2009)Google Scholar
- 16.Fensel, D.: Foundations for the Web of Information and Services: A Review of 20 Years of Semantic Web Research, 416 p. Springer, Berlin (2011)Google Scholar
- 17.
- 18.Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis, 148 p. Now Publishers Inc., Boston (2008)CrossRefGoogle Scholar
- 19.Devitt, A., Ahmad, K.: Sentiment analysis in financial news: a cohesion-based approach. In: Proceedings of the Association for Computational Linguistics (ACL 2007), pp. 984–991 (2007)Google Scholar
- 20.Eguchi, K., Lavrenko, V.: Sentiment retrieval using generative models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pp. 345–354 (2006)Google Scholar
- 21.Clark, A.V.: Mood State and Health, 213 p. Nova Publishers, Boston (2005)Google Scholar
- 22.McNair, D.M, Lorr, M., Droppleman, L.F.: Profile of Mood States - San Diego. Educational and Industrial Testing Service, California (1971)Google Scholar
- 23.Siegel, E.: Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, 320 p. Wiley, Hoboken (2013)Google Scholar
- 24.Mishra, N.: Predictive analytics: a survey, trends, applications, opportunities & challenges. Int. J. Comput. Sci. Inf. Technol. 3, 4434–4438 (2012)Google Scholar
- 25.Asghar, N.: Automatic extraction of causal relations from natural language texts: a comprehensive survey. arXiv preprint arXiv:1605.07895, May 2016
- 26.Sorgente, A.: Automatic extraction of cause-effect relations in natural language text. In: Proceedings of the 13th Conference of the Italian Association for Artificial Intelligence, pp. 37–48 (2013)Google Scholar
- 27.Darian, S.: Cause and effect in a corpus of science textbooks. ESP. Malaysia 4, 65–83 (1996)Google Scholar
- 28.Khoo, C.S.G.: Automatic identification of causal relations in text and their use for improving precision in information retrieval. Doctoral dissertation, Syracuse University (1995). Dissertation Abstracts International, 5704A, 1364Google Scholar
- 29.Xuelan, F., Kennedy, G.: Expressing causation in written English. RELC J. 23(1), 62–80 (1992)CrossRefGoogle Scholar
- 30.Chan, K., Lam, W.: Extracting causation knowledge from natural language texts. Int. J. Intell. Syst. 20(3), 327–358 (2005)CrossRefGoogle Scholar
- 31.Radinsky, K., Davidovich, S.: Learning to predict from textual data. J. Artif. Intell. Res. 45, 641–684 (2012)CrossRefGoogle Scholar
- 32.Radinsky, K.: Learning causality for news events prediction. In: Proceedings of the 21st International Conference on World Wide Web ACM, pp. 909–918 (2012)Google Scholar
- 33.Kaplan, R., Berry-Rogghe, G.: Knowledge-based acquisition of causal relationships in text. Knowl. Acquisition 3(3), 317–337 (1991)CrossRefGoogle Scholar
- 34.Wolff, P., Song, G., Driscoll, D.: Models of causation and causal verbs. In: Meeting of the Chicago Linguistics Society, main session, vol. 1, p. 607–622 (2002)Google Scholar
- 35.Levin, B., Hovav, M.A.: Preliminary analysis of causative verbs in English. Lingua 92, 35–77 (1994)CrossRefGoogle Scholar
- 36.Altenberg, B.: Causal linking in spoken and written English. Studia Linguistica 38(1), 20–69 (1984)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019