Advertisement

Convergence and Hardness of Strategic Schelling Segregation

  • Hagen Echzell
  • Tobias Friedrich
  • Pascal LenznerEmail author
  • Louise Molitor
  • Marcus Pappik
  • Friedrich Schöne
  • Fabian Sommer
  • David Stangl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11920)

Abstract

The phenomenon of residential segregation was captured by Schelling’s famous segregation model where two types of agents are placed on a grid and an agent is content with her location if the fraction of her neighbors which have the same type as her is at least \(\tau \), for some \(0<\tau <1\). Discontent agents simply swap their location with a randomly chosen other discontent agent or jump to a random empty cell.

We analyze a generalized game-theoretic model of Schelling segregation which allows more than two agent types and more general underlying graphs modeling the residential area. For this we show that both aspects heavily influence the dynamic properties and the tractability of finding an optimal placement. We map the boundary of when improving response dynamics (IRD) are guaranteed to converge and we prove several sharp threshold results where guaranteed IRD convergence suddenly turns into a strong non-convergence result: a violation of weak acyclicity. In particular, we show threshold results also for Schelling’s original model, which is in contrast to the standard assumption in many empirical papers. In case of convergence we show that IRD find equilibria quickly.

Keywords

Schelling segregation Convergence of improving response dynamics Potential games Computational hardness 

References

  1. 1.
    Alba, R.D., Logan, J.R.: Minority proximity to whites in suburbs: an individual-level analysis of segregation. Am. J. Sociol. 98(6), 1388–1427 (1993)CrossRefGoogle Scholar
  2. 2.
    Barmpalias, G., Elwes, R., Lewis-Pye, A.: Unperturbed schelling segregation in two or three dimensions. J. Stat. Phys. 164(6), 1460–1487 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barmpalias, G., Elwes, R., Lewis-Pye, A.: Digital morphogenesis via schelling segregation. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 156–165. IEEE (2014)Google Scholar
  4. 4.
    Bazgan, C., Tuza, Z., Vanderpooten, D.: The satisfactory partition problem. Discret. Appl. Math. 154(8), 1236–1245 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benard, S., Willer, R.: A wealth and status-based model of residential segregation. Math. Sociol. 31(2), 149–174 (2007)CrossRefGoogle Scholar
  6. 6.
    Benenson, I., Hatna, E., Or, E.: From schelling to spatially explicit modeling of urban ethnic and economic residential dynamics. Sociol. Methods Res. 37(4), 463–497 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bhakta, P., Miracle, S., Randall, D.: Clustering and mixing times for segregation models on \(\cal{Z}^2\). In: Symposium on Discrete Algorithms (SODA), pp. 327–340 (2014)Google Scholar
  8. 8.
    Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R.: An analysis of one-dimensional schelling segregation. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing (STOC), pp. 789–804. ACM (2012)Google Scholar
  9. 9.
    Bruch, E.E.: How population structure shapes neighborhood segregation. Am. J. Sociol. 119(5), 1221–1278 (2014)CrossRefGoogle Scholar
  10. 10.
    Cable, D.: The racial dot map. Weldon Cooper Center for Public Service, University of Virginia (2013). https://demographics.coopercenter.org/Racial-Dot-Map/
  11. 11.
    Chauhan, A., Lenzner, P., Molitor, L.: Schelling segregation with strategic agents. In: Deng, X. (ed.) SAGT 2018. LNCS, vol. 11059, pp. 137–149. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99660-8_13CrossRefGoogle Scholar
  12. 12.
    Clark, W.A.V.: Residential segregation in american cities: a review and interpretation. Popul. Res. Policy Rev. 5(2), 95–127 (1986)CrossRefGoogle Scholar
  13. 13.
    Clark, W.A.V., Fossett, M.: Understanding the social context of the schelling segregation model. Proc. Natl. Acad. Sci. 105(11), 4109–4114 (2008)CrossRefGoogle Scholar
  14. 14.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press and McGraw-Hill, Cambridge (2001)zbMATHGoogle Scholar
  15. 15.
    Echzell, H., et al.: Convergence and hardness of strategic schelling segregation. arXiv:1907.07513 (2019)
  16. 16.
    Elkind, E., Gan, J., Igarashi, A., Suksompong, W., Voudouris, A.A.: Schelling games on graphs. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 266–272 (2019)Google Scholar
  17. 17.
    Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. The Brookings Institution, Washington, D.C. (1996)CrossRefGoogle Scholar
  18. 18.
    Fossett, M.: Ethnic preferences, social distance dynamics, and residential segregation: theoretical explorations using simulation analysis. J. Math. Sociol. 30(3–4), 185–273 (2006)CrossRefGoogle Scholar
  19. 19.
    Fossett, M.A.: SimSeg-a computer program to simulate the dynamics of residential segregation by social and ethnic status. Texas A&M University, Race and Ethnic Studies Institute Technical Report and Program (1998)Google Scholar
  20. 20.
    Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Co., San Francisco (1979). A guide to the theory of NP-completeness, A Series of Books in the Mathematical SciencesGoogle Scholar
  21. 21.
    Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gaylord, R.J., D’Andria, L.J.: Simulating Society: A “Mathematica” Toolkit for Modeling Socioeconomic Behaviour. Springer, Heidelberg (1998).  https://doi.org/10.1007/978-1-4612-1726-8CrossRefGoogle Scholar
  23. 23.
    Gerber, M.U., Kobler, D.: Partitioning a graph to satisfy all vertices. Technical report (1998)Google Scholar
  24. 24.
    Gerber, M.U., Kobler, D.: Algorithmic approach to the satisfactory graph partitioning problem. Eur. J. Oper. Res. 125, 283–291 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gerhold, S., Glebsky, L., Schneider, C., Weiss, H., Zimmermann, B.: Computing the complexity for schelling segregation models. Commun. Nonlinear Sci. Numer. Simul. 13, 2236–2245 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Grauwin, S., Goffette-Nagot, F., Jensen, P.: Dyanmic models of residential segregation: an analytical solution. J. Public Econ. 96, 124–141 (2012)CrossRefGoogle Scholar
  27. 27.
    Henry, A.D., Prałat, P., Zhang, C.Q.: Emergence of segregation in evolving social networks. Proc. Natl. Acad. Sci. 108(21), 8605–8610 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Immorlica, N., Kleinbergt, R., Lucier, B., Zadomighaddam, M.: Exponential segregation in a two-dimensional schelling model with tolerant individuals. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 984–993. SIAM (2017)Google Scholar
  29. 29.
    Mobius, M., Rosenblat, T.: Computing the complexity for schelling segregation models. Unpublished manuscript (2000)Google Scholar
  30. 30.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pancs, R., Vriend, N.J.: Schelling’s spatial proximity model of segregation revisited. J. Public Econ. 91(1), 1–24 (2007)CrossRefGoogle Scholar
  32. 32.
    Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)Google Scholar
  33. 33.
    Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1(2), 143–186 (1971)CrossRefGoogle Scholar
  34. 34.
    Schelling, T.C.: Micromotives and Macrobehavior. WW Norton & Company, New York (2006)Google Scholar
  35. 35.
    Singh, A., Vainchtein, D., Weiss, H.: Schelling’s segregation model: parameters, scaling, and aggregation. Demogr. Res. 21(12), 341–366 (2009)CrossRefGoogle Scholar
  36. 36.
    Vinković, D., Kirman, A.: A physical analogue of the schelling model. Proc. Natl. Acad. Sci. 103(51), 19261–19265 (2006)CrossRefGoogle Scholar
  37. 37.
    Young, H.P.: The evolution of conventions. Econ.: J. Econ. Soc. 61, 57–84 (1993)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Young, H.P.: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press, Princeton (1998)Google Scholar
  39. 39.
    Zhang, J.: A dynamic model of residential segregation. J. Math. Sociol. 28(3), 147–170 (2004)CrossRefGoogle Scholar
  40. 40.
    Zhang, J.: Residential segregation in an all-integrationist world. J. Econ. Behav. Organ. 54(4), 533–550 (2004)CrossRefGoogle Scholar
  41. 41.
    Zhang, J.: Tipping and residential segregation: a unified schelling model. J. Reg. Sci. 51(1), 167–193 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hagen Echzell
    • 1
  • Tobias Friedrich
    • 1
  • Pascal Lenzner
    • 1
    Email author
  • Louise Molitor
    • 1
  • Marcus Pappik
    • 1
  • Friedrich Schöne
    • 1
  • Fabian Sommer
    • 1
  • David Stangl
    • 1
  1. 1.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany

Personalised recommendations