Aircraft Aluminum Alloys: Applications and Future Trends

  • Alexis T. KermanidisEmail author


Within the last century aluminum alloys have played a strategic role in the manufacturing and development of lightweight aircraft structures. Years of continuous research has led to significant improvement in mechanical properties in the form of advanced 2xxx and 7xxx series alloys and the opportunity to produce more lightweight materials with advanced properties such as the last-generation Al–Li alloys. An overview of the evolution of aircraft aluminum alloys from the original Al–Cu alloys to modern nanocrystalline and hybrid aluminum alloys is presented. Basic properties and processes are featured, that define the material performance and determine their main applications in aircraft industry. Finally, novel trends in the design of aluminum alloys are considered in order to meet the future challenges of modern aircraft applications.


Aircraft aluminum alloys Wrought Cast Heat treatment Performance Properties Processing Welding Recycling 


  1. Abibe AB, Amancio-Filho ST, Dos Santos JF, Hage E (2013) Mechanical and failure behaviour of hybrid polymer-metal staked joints. Mater Des 46:338–347CrossRefGoogle Scholar
  2. Abibe AB, Sônego M, Dos Santos JF, Canto LB, Amancio-Filho ST (2016) On the feasibility of a friction-based staking joining method for polymer-metal hybrid structures. Mater Des 92:632–642CrossRefGoogle Scholar
  3. Adachi T, Kimura S, Nagayama T (2004) Age forming technology for aircraft wing skin. Mater Forum 28:320–8564Google Scholar
  4. Aerospace aluminum AA5028 AlMgSc the strong lightweight. (2015). Accessed 30 May 2018
  5. Aircraft extrusion—profiles and shapes. (2017). Accessed 30 May 2018
  6. Alderliesten RC, Homan JJ (2006) Fatigue and damage tolerance issues of Glare in aircraft structures. Int J Fatigue 28(10):1116–1123CrossRefGoogle Scholar
  7. Alfieri V, Cardaropoli F, Caiazzo F, Sergi V (2011) Porosity evolution n AA 2024 BOP and Butt defocused welding by YB-Yag disc laser. Eng Rev J 31:125Google Scholar
  8. Aluminum forged products for aircraft applications. (2018). Accessed 30 May 2018
  9. Aluminum-silicon alloys. (1999–2010). Accessed 30 May 2018
  10. Amancio-Filho ST, Dos Santos JF (2009) Joining of polymers and polymer–metal hybrid structures: recent developments and trends. Polym Eng Sci 49(8):1461–1476CrossRefGoogle Scholar
  11. Armentani E, Citarella R, Sepe R (2011) FML full scale aeronautic panel under multiaxial fatigue: experimental test and DBEM simulation. Eng Fract Mech 78:1717–1728CrossRefGoogle Scholar
  12. ASM handbook volume 2: properties and selection: nonferrous alloys and special purpose materials. (1990) ASM International, Metals ParkGoogle Scholar
  13. Asmatulu E, Overcash M, Twomey J (2013) Recycling of aircraft: state of the art in 2011. J Ind Eng 2013:1–9Google Scholar
  14. Bariani PF, Bruschi S, Ghiotti A, Michieletto F (2013) Hot stamping of AA5083 aluminium alloy sheets. CIRP Ann 62(1):251–254CrossRefGoogle Scholar
  15. Bodily B, Heinimann M, Bray G, Colvin E, Witters J (2012) Advanced aluminum and aluminum–lithium solutions for derivative and next generation aerospace structures. SAE Technical Paper paper no 2012-01-1874Google Scholar
  16. Bonetti E, Pasquini L, Sampaolesi E (1997) The influence of grain size on the mechanical properties of nanocrystalline aluminium. Nanostruct Mater 9(1–8):611–614CrossRefGoogle Scholar
  17. Buffa G, Baffari D, Campanella D, Fratini L (2016) An innovative friction stir welding based technique to produce dissimilar light alloys to thermoplastic matrix composite joints. Procedia Manuf 5:319–331CrossRefGoogle Scholar
  18. Chakrabarti DJ, Liu J, Sawtell RR, Venema GB (2004) New generation high strength high damage tolerance 7085 thick alloy product with low quench sensitivity. In: Proceedings of the 9th international conference on aluminium alloys. pp 969–974Google Scholar
  19. Charts/data/etc (2009) CES EduPack. Granta Design Limited, Cambridge. www.grantadesign.comGoogle Scholar
  20. Cheng S, Zhao YH, Zhu YT, Ma E (2007) Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater 55(17):5822–5832CrossRefGoogle Scholar
  21. Choi HJ, Lee SW, Park JS, Bae DH (2008) Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders. Scr Mater 59(10):1123–1126CrossRefGoogle Scholar
  22. Davis JR (1999) Corrosion of aluminum and aluminum alloys. ASM International, Metals ParkGoogle Scholar
  23. Davis JR (2001) Aluminum and aluminum alloys, alloying: understanding the basics. ASM International, Metals ParkGoogle Scholar
  24. Dhaliwal GS, Newaz GM (2017) Compression after impact characteristics of carbon fiber reinforced aluminum laminates. Compos Struct 160:1212–1224CrossRefGoogle Scholar
  25. Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Rev Mater Design 56:862–871CrossRefGoogle Scholar
  26. Eckelman MJ, Ciacci L, Kavlak G, Nuss P, Reck BK, Graedel TE (2014) Life cycle carbon benefits of aerospace alloy recycling. J Clean Prod 80:38–45CrossRefGoogle Scholar
  27. Eswara Prasad N, Rama Rao P (2000) Low cycle fatigue resistance in Al–Li alloys. Mater Sci Technol 16:408–426CrossRefGoogle Scholar
  28. Eswara Prasad N, Kamat SV, Malakondaiah G (1993a) Effect of crack deflection and branching on R-curve behaviour of an Al–Li alloy 2090 sheet. Int J Fract 61:55–69CrossRefGoogle Scholar
  29. Eswara Prasad N, Kamat SV, Prasad KS, Malakondaiah G, Kutumbarao VV (1993b) In-plane anisotropy in fracture toughness of an Al–Li 8090 plate. Eng Fract Mech 46(2):209–223CrossRefGoogle Scholar
  30. Eswara Prasad N, Malakondaiah G, Kutumbarao VV, Rama Rao P (1996) In-plane anisotropy in low cycle fatigue properties of and bilinearity in Coffin–Manson plots for quaternary Al–Li–Cu–Mg 8090 alloy plate. Mater Sci Technol 12:563–577CrossRefGoogle Scholar
  31. Eswara Prasad N, Malakondaiah G, Kutumbarao VV (1997) On the micromechanisms responsible for bilinearity in fatigue power-law relationships in aluminium–lithium alloys. Scr Mater 37:581–587CrossRefGoogle Scholar
  32. Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf 48(15):1688–1692CrossRefGoogle Scholar
  33. Flores-Campos R, Estrada-Guel I, Miki-Yoshida M, Martínez-Sánchez R, Herrera-Ramírez JM (2012) Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion. Mater Charact 63:39–46CrossRefGoogle Scholar
  34. Flower H, Soutis C (2003) Materials for airframes. Aeronaut J (1968) 107(1072):331–341. Scholar
  35. Foster A, Dean TA, Lin J (2009) European patent specification, process for forming aluminum alloy sheet components, EP 2 324 137 B1Google Scholar
  36. Frazier WE (2014) Metal additive manufacturing: a review. JMEPEG 23:1917–1928CrossRefGoogle Scholar
  37. Gardiner FJ (1957) The Springback of metals. Trans ASME 79(1):1–9Google Scholar
  38. Ghainia FM, Sheikhia M, Torkamany M, Sabbaghzadeh J (2009) The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy. J Mater Sci Eng A 519:167–171CrossRefGoogle Scholar
  39. Gilbert J, Kaufman G (2000) Introduction to aluminum alloys and tempers. ASM International, Metals ParkGoogle Scholar
  40. Goushegir SM (2016) Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures. J Weld World 60:1073–1093CrossRefGoogle Scholar
  41. Goushegir SM, Dos Santos JF, Amancio-Filho ST (2014) Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly (phenylene sulfide) composite single lap joints: microstructure and mechanical performance. Mater Des 54:196–206CrossRefGoogle Scholar
  42. Gregson PJ, Flower HM (1985) Microstructural control of toughness in aluminium–lithium alloys. Acta Metall 33:527–537CrossRefGoogle Scholar
  43. Grujicic M, Arakere G, Yalavarthy HV, He T, Yen CF, Cheeseman BA (2010) Modeling of AA5083 material-macrostructure evolution during butt friction-stir welding. J Mater Eng Perform 19(5):672–684CrossRefGoogle Scholar
  44. Gunnink JW, Vlot A, Alderliesten RC, Van der Hoeven W, De Boer A, Hart W, Van Hengel CG, Kuijpers PL, Van Oost RC, Roebroeks GHJJ, Sinke J, Ypma MS, De Vries TJ, Wittenberg Th. (2000) Towards technology readiness of fibre metal laminates. In: Paper presented at international congress of aeronautical sciences, 22nd. HarrogateGoogle Scholar
  45. Hatch JE (1984) Aluminum: properties and physical metallurgy. Aluminum Association, American Society for Metals, ASM International, Metals ParkGoogle Scholar
  46. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRefGoogle Scholar
  47. Hocheng H (2012) Machining technology for composite materials: principles and practice. Woodhead Pub, CambridgeCrossRefGoogle Scholar
  48. Hu M, Richardson I (2005) Autogenous laser keyhole welding of aluminum alloy 2024. J Laser Appl 17:70CrossRefGoogle Scholar
  49. Ibrahim IA, Mohamed FA, Lavernia EJ, Mater J (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156CrossRefGoogle Scholar
  50. Jata KV, Starke EA (1986) Fatigue crack growth and fracture toughness behaviour of an Al–Li–Cu alloy. Metall Trans A 17:1011–1026CrossRefGoogle Scholar
  51. Jata KV, Panchandeeswaran S, Vasudevan AK (1998) Evolution of texture, microstructure and mechanical property anisotropy in an Al–Li–Cu alloy. Mater Sci Eng A 257:37–46CrossRefGoogle Scholar
  52. Ji YH, Park JJ (2008) Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol 201(1–3):354–358CrossRefGoogle Scholar
  53. Jones R, Baker AA, Matthews N, Champagne VK (2017) Aircraft sustainment and repair. Butterworth-Heinemann, OxfordGoogle Scholar
  54. Kang SG, Kim MG, Kim CG (2007) Evaluation of cryogenic performance of adhesives using composite–aluminum double-lap joints. Compos Struct 78:440–446CrossRefGoogle Scholar
  55. Kappes J, Liewald M (2011) Evaluation of pneumatic bulge test experiments and corresponding numerical forming simulations. J Mater Sci Eng B 1:472–478Google Scholar
  56. Kaufman JG (2001) Fracture resistance of aluminum alloys—notch toughness, tear resistance, and fracture toughness. ASM International, Materials ParkGoogle Scholar
  57. Kaufmann N, Imran M, Wischeropp TM, Emmelmann C, Siddique S, Walther F (2016) Influence of process parameters on the quality of aluminum alloy EN AW 7075 using selective laser melting (SLM). Phys Procedia 83:918–926CrossRefGoogle Scholar
  58. Kermanidis AT, Pantelakis SG (2011) Prediction of crack growth following a single overload in aluminum alloy with sheet and plate microstructure. Eng Fract Mech 78(11):2325–2337CrossRefGoogle Scholar
  59. Kermanidis AT, Tzamtzis A (2017) An experimental approach for estimating the effect of heat affected zone (HAZ) microstructural gradient on fatigue crack growth rate in aluminum alloy FSW. Mater Sci Eng A 691:110–120CrossRefGoogle Scholar
  60. Kermanidis AT, Zervaki AD, Haidemenopoulos GN, Pantelakis SG (2010) Effects of temper condition and corrosion on the fatigue performance of a laser-welded Al–Cu–Mg–Ag (2139) alloy. Mater Des 31:42–49CrossRefGoogle Scholar
  61. Krajewski PE, Schroth JG (2007) Overview of quick plastic forming technology. Mater Sci Forum 551–552:3–12CrossRefGoogle Scholar
  62. Lambiase F, Ko DC (2017) Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets. Compos Struct 164:180–188CrossRefGoogle Scholar
  63. Lang L, Danckert J, Nielsen KB (2004a) Investigation into the effect of pre-bulging during hydromechanical deep drawing with uniform pressure onto the blank. Int J Mach Tools Manuf 44(6):649–657CrossRefGoogle Scholar
  64. Lang LH, Danckert J, Nielsen KB (2004b) Analysis of key parameters in sheet hydroforming combined with stretching forming and deep drawing. Proc Inst Mech Eng B J Eng Manuf 218(8):845–856CrossRefGoogle Scholar
  65. Lavernia EJ, Srivatsan TS, Mohammed FA (1990) Review—strength, deformation, fracture behavior and ductility of aluminium–lithium alloys. J Mater Sci 25:1137–1158CrossRefGoogle Scholar
  66. Lenczowski B (2002) New lightweight alloys for welded aircraft structure. In: Paper presented at ICAS congressGoogle Scholar
  67. Lequeu PH, Smith K, Danielou A (2010) Aluminium–copper–lithium alloy 2050 developed for medium to thick plate. J Mater Eng Perform 19(6):841–847CrossRefGoogle Scholar
  68. Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46:151–186CrossRefGoogle Scholar
  69. Li Y, Zhao YH, Ortalan V, Liu W, Zhang ZH, Vogt RG, Browning ND, Lavernia EJ, Schoenung JM (2009) Investigation of aluminum-based nanocomposites with ultra-high strength. Mater Sci Eng A 527(1–2):305–316CrossRefGoogle Scholar
  70. Lin FS, Chakravorty SB, Starke EA (1982) Microstructure-property relationships of two Al-3Li–2Cu–0_2XCd alloys. Metall Trans A 13:401–410CrossRefGoogle Scholar
  71. Lionetto F, Balle F, Maffezzoli A (2017) Hybrid ultrasonic spot welding of aluminum to carbon fiber reinforced epoxy composites. J Mater Process Technol 247:289–295CrossRefGoogle Scholar
  72. Liu F, Ma Z (2008) Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminium alloy. Metall Mater Trans A 39(10):2378–2388CrossRefGoogle Scholar
  73. Liu H, Zhang H, Yu L (2011) Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy. Mater Des 32(3):1548–1553CrossRefGoogle Scholar
  74. Ludovico A, Daurelio G, De Filippis L, Scialpi A Squeo F (2005) In: Proceedings of XV international symposium on gas flow, chemical lasers, and high-power lasers, Bellingham. p 887Google Scholar
  75. Lynch SP (1991) Fracture of 8090 Al–Li plate–I. Short transverse fracture toughness. Mater Sci Eng A 136:25–43CrossRefGoogle Scholar
  76. Maeno T, Mori K, Yachi R (2017) Hot stamping of high-strength aluminium alloy aircraft parts using quick heating. CIRP Ann Manuf Technol 66:269–272CrossRefGoogle Scholar
  77. Malekjani S, Hodgson PD, Cizek P, Sabirov I, Hilditch TB (2011) Cyclic deformation response of UFG 2024 Al alloy. Int J Fatigue 33(5):700–709CrossRefGoogle Scholar
  78. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA Pollock TM (2017) 3D printing of high strength aluminum alloys. Nature 549:365–369CrossRefGoogle Scholar
  79. Mativenga PT, Hon KKB (2005) An experimental study of cutting force in high speed end milling and implications for dynamic force modeling. J Manuf Sci Eng 127(2):251–261CrossRefGoogle Scholar
  80. Merica PD, Waltenberg RG, Scott H (1919) Heat treatment of Duralumin. Scientific Papers of the Bureau of Standards, vol. 15. pp 271–316CrossRefGoogle Scholar
  81. Moreto JA, Gamboni O, Ruchert COFT, Romagnoli F, Moreira MF, Beneduce F, Bose Filho WW (2011) Corrosion and fatigue behavior of new Al alloys. Procedia Eng 10:1521–1526CrossRefGoogle Scholar
  82. Nandan R, DebRoy T, Bhadeshia H (2008) Recent advances in friction-stir welding—Process, weldment structure and properties. Prog Mater Sci 53(6):980–1023CrossRefGoogle Scholar
  83. Palumbo G, Piglionico V, Piccininni A, Guglielmi P, Tricarico L (2016) Evaluation of the optimal working conditions for the warm sheet hydroforming taking into account the yielding condition. Mater Des 91(5):411–423CrossRefGoogle Scholar
  84. PAMELA—Process for Advanced Management of End of Life of Aircraft LIFE05 ENV/F/000059 (2008)Google Scholar
  85. Peel CJ, McDarmaid D, Evans B (1988) Considerations of critical factors for the design of aerospace structures using current and future aluminium–lithium alloys. In: Kar RJ, Agrawal SP, Quist WE (eds) Aluminium–lithium alloys—design, development and applications update. ASM International, Metals Park, pp 315–337Google Scholar
  86. Pereira DA, Batalha MHF, Carunchio AF, Resende HB (2016) Analysis of superplastic forming process applied to aerospace industry: case study of Al 5083 alloy. In: Full paper, Aerospace technology congress, Solna, StockholmGoogle Scholar
  87. Perez Ι, Madariaga Α, Cuesta Μ, Garay Α, Arrazola PJ, Ruiz JJ, Rubio FJ, Sanchez R (2018) Effect of cutting speed on the surface integrity of face milled 7050-T7451 aluminium workpieces. Procedia CIRP 71:460–465CrossRefGoogle Scholar
  88. Pingwei X, Hongyun L (2016) Improving the ductility of nanostructured Al alloy using strongly textured nano-laminated structure combined with nano-precipitates. Mater Sci Eng A 675:323–337CrossRefGoogle Scholar
  89. Pora J (2001) Composite materials in the airbus A380–from history to future. In: Proceedings of ICCM13. Plenary lecture. CD-ROMGoogle Scholar
  90. Pourboghrat F, Chandorkar K (1992) Springback calculation for plane strain sheet forming using finite element membrane solution. In: American Society of Mechanical Engineers, Computer Engineering Division, CED, vol. 5. pp 85–93Google Scholar
  91. Prater T (2014) Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronaut 93:366–373CrossRefGoogle Scholar
  92. Preston RV, Shercliff HR, Withers PJ, Smith S (2004) Physically based constitutive modelling of residual stress development in welding of aluminium alloy 2024. Acta Mater 52(17):4973–4983CrossRefGoogle Scholar
  93. Rajan R, Kah P, Mvola B, Martikainen J (2016) Trends in aluminum alloy development and their joining methods. Rev Adv Mater Sci 44:383–397Google Scholar
  94. Rambabu P, Eswara Prasad N, Kutumbarao VV, Wanhill RJH (2017) Aluminium alloys for aerospace applications. In: Prasad NE, Wanhill RJH (eds) Aerospace materials and material technologies, Aerospace materials, vol 1. Springer, SingaporeGoogle Scholar
  95. Roberts CE, Bourell D, Watt T, Cohen J (2016) A novel processing approach for additive manufacturing of commercial aluminum alloys. Phys Procedia 83:909–917CrossRefGoogle Scholar
  96. Rolling aluminum: from the mine through the mill. (2008). Accessed 30 May 2018
  97. Sabirov I, Murashkin MY, Valiev RZ (2013) Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. Mater Sci Eng A 560:1–24CrossRefGoogle Scholar
  98. Saha PK (2017) Overview of global aerospace parts manufacturing. In: Boeing Research & Technology the Boeing Company Technologies, symposium on auto parts tech day (auto parts and the future industries: aerospace, electric vehicle, and intelligent system) Bangkok, ThailandGoogle Scholar
  99. Sanders TH, Starke EA (1982) The effect of slip distribution on the monotonic and cyclic ductility of Al–Li binary alloys. Acta Metall 30:927–939CrossRefGoogle Scholar
  100. Schijve J (2009) Fatigue of structures and materials. Springer, AmsterdamCrossRefGoogle Scholar
  101. Seong MS, Kim TH, Nguyen KH, Kweon JH, Choi JH (2008) A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum. Compos Struct 86(1–3):135–145CrossRefGoogle Scholar
  102. Sercombe TB, Li X (2016) Selective laser melting of aluminium and aluminium metal matrix composites: review. Mater Technol 31(2):77–85Google Scholar
  103. Starke EA Jr, Staley JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerosp Sci 32(2–3):131–172CrossRefGoogle Scholar
  104. Starke EA Jr, Sanders TH Jr, Palmer IG (1981) New approaches to alloy development in the Al-Li, system. JOM 33:24–33CrossRefGoogle Scholar
  105. Starke EA, Lin FS (1982) The influence of grain structure on the ductility of the Al–Cu–Li–Mn–Cd alloy 2020. Metall Trans A 13(12):2259–2269CrossRefGoogle Scholar
  106. Sun J, Liu X, Tong Y, Deng D (2014) A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Mater Des 63:519–530CrossRefGoogle Scholar
  107. Suresh S, Vasudevan AK, Tosten M, Howell PR (1987) Microscopic and macroscopic aspects of fracture in lithium containing aluminium alloys. Acta Metall 35:25–46CrossRefGoogle Scholar
  108. Teixeira de Freitas S, Sinke J (2017) Failure analysis of adhesively-bonded metal-skinto-composite-stiffener: effect of temperature and cyclic loading. Compos Struct 166:27–37CrossRefGoogle Scholar
  109. The Aluminum Design Manual (2015). Accessed 30 May 2018
  110. The Aluminum-Scandium Alloy Advantage (2017). Accessed 30 May 2018
  111. Thomas W, Nicholas E, Needham J, Church M, Emplesmith P, Dawes C (1991) Friction stir welding, England Patent PCT/GB92102203Google Scholar
  112. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (n.d.) Improvements relating to friction welding. European Patent Specification EP0615480B1Google Scholar
  113. Tzamtzis A, Kermanidis AT (2014) Improvement of fatigue crack growth resistance by controlled overaging in 2024-T3 aluminium alloy. Fatigue Fract Eng Mater Struct 00:1–13Google Scholar
  114. Venkateswara Rao KT, Ritchie RO (1989) Mechanical properties of aluminium–lithium alloys: part– I. Fracture toughness and microstructure. Mater Sci Technol 5:882–895CrossRefGoogle Scholar
  115. Venkateswara Rao KT, Ritchie RO (1992) Fatigue in aluminium–lithium alloys. Int Mater Rev 37:153–185CrossRefGoogle Scholar
  116. Vlot A, Gunnink JW (2001) Fibre metal laminates: an introduction. Springer, AmsterdamCrossRefGoogle Scholar
  117. Vlot A, Vogelesang L, De Vries T (1999) Towards application of fibre metal laminates in large aircraft. Aircr Eng Aerosp Technol 71(6):558–570CrossRefGoogle Scholar
  118. Wanhill RJH (1994) Status and prospects for aluminium–lithium alloys in aircraft structures. Int J Fatigue 16:3–20CrossRefGoogle Scholar
  119. Webster D (1987) The effect of low melting point impurities on the properties of aluminium–lithium alloys. Metall Mater Trans A 18:2187–2193CrossRefGoogle Scholar
  120. Welpmann K, Peters M, Sanders TH (1984) Aluminium–lithium alloys. Aluminium 60:641–646Google Scholar
  121. Wu G, Yang JM (2005) The mechanical behavior of GLARE laminates for aircraft structures. JOM 57(1):72–79CrossRefGoogle Scholar
  122. Xin X, Zhiqiang L, Zhang D, Chen Z (2010) In situ synthesis of nanostructured carbon reinforcement in aluminum powders. Mater Lett 64(10):1154–1156CrossRefGoogle Scholar
  123. Xu N, Ueji R, Fujii H (2015) Enhanced mechanical properties of 70/30 brass joint by multi-pass friction stir welding with rapid cooling. Sci Technol Weld Join 20(2):91–99CrossRefGoogle Scholar
  124. Ye JC, Han BQ, Lee ZH, Anh B, Nutt SR, Schoenung JM (2005) A tri-modal aluminum based composite with super-high strength. Scr Mater 53(5):481–486CrossRefGoogle Scholar
  125. Yeomans SR (1990) Successful welding of aluminium and its alloys. Australian Welding J 35:20–24Google Scholar
  126. Yorulmaz B, Demir B, Ulus A (2016) Aluminum sheet production: general principles of cold rolling. In: Paper presented at 18th international metallurgy & materials congress, InstanbulGoogle Scholar
  127. Yu GC, Wu LZ, Ma L, Xiong J (2015) Low velocity impact of carbon fiber aluminum laminates. Compos Struct 119:757–766CrossRefGoogle Scholar
  128. Zampaloni M, Abedrabbo N, Pourboghrat F (2003) Experimental and numerical study of stamp hydroforming of sheet metals. Int J Mech Sci 45(11):1815–1848CrossRefGoogle Scholar
  129. Zhang ZH, Topping T, Li Y, Vogt R, Zhou YZ, Haines C, Paras J, Kapoor D, Schoenung JM, Lavernia EJ (2011) Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scripta Mater 65(8):652–655CrossRefGoogle Scholar
  130. Zhang H, Zhu H, Qi T, Hu Z, Zeng X (2016) Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties. Mater Sci Eng A 656:47–54CrossRefGoogle Scholar
  131. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Simultaneously increasing the ductility and strength of nanostructured Alloys. Adv Mater 18(17):2280–2283CrossRefGoogle Scholar
  132. Zheng K, Politis DJ, Wang L, Lin J (2018) A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components. Int J Lightweight Mater Manuf 1(2):55–80Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of Mechanics and Strength of Materials, Department of Mechanical EngineeringUniversity of ThessalyVolosGreece

Personalised recommendations