Advertisement

Web Semantic Technologies in Web Based Educational System Integration

  • Géraud Fokou PelapEmail author
  • Catherine Faron Zucker
  • Fabien Gandon
  • Laurent Polese
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 372)

Abstract

Web based e-Education systems are an important kind of information systems that benefited from Web standards for content, implementation, deployment and integration. An e-Education system requires the collaboration of many actors in a complete ecosystem: public authorities (e.g. Ministry) and knowledge engineers, who build official reference standards; teachers and pedagogical engineers, who build digital pedagogical resources; and IT engineers who build digital platforms for e-Learning. In this article we propose and evaluate a Semantic Web approach to support the features and interoperability of a real industrial e-Education system in production. We show how ontology-based knowledge representation supports the required features, their extension to new ones and the integration of external resources (e.g. official standards) as well as interoperability with other systems and knowledge sharing between different actors. Our proof of concept is entirely based on Semantic Web technologies and complies with the industrial constraints; we qualitatively and quantitatively evaluated it and performed a benchmark of different alternatives on real data and real queries. We present an in-depth evaluation of the quality of service and response time in this industrial context that shows on a real-world testbed that Semantic Web based solutions can meet the industrial requirements, both in terms of services and efficiency compared to existing operational solutions.

Keywords

e-Education information system e-Education model Semantic Web Ontology Benchmarking Web API REST SPARQL 

References

  1. 1.
    Al-Yahya, M., Al-Faries, A., George, R.: Curonto: an ontological model for curriculum representation. In: Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education, ITiCSE 2013, pp. 358. ACM, New York (2013)Google Scholar
  2. 2.
    Al-Yahya, M., George, R., Al-Faries, A.: Ontologies in e-learning: review of the literature. Int. J. Softw. Eng. Appl. 9, 67–84 (2015)Google Scholar
  3. 3.
    Alsultanny, Y.A.: e-learning system overview based on semantic web. Electron. J. e-Learning 4, 111–118 (2006)Google Scholar
  4. 4.
    Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente, P.: An empirical study of real-world SPARQL queries. CoRR abs/1103.5043 (2011)Google Scholar
  5. 5.
    Brusilovsky, P., Peylo, C.: Adaptive and intelligent web-based educational systems. Int. J. Artif. Intell. Educ. 13(2–4), 159–172 (2003). http://dl.acm.org/citation.cfm?id=1434845.1434847Google Scholar
  6. 6.
    Committee, I.L.L.: IEEE Standard for Learning Object Metadata. IEEE Standards Association, September 2002. https://standards.ieee.org/findstds/standard/1484.12.1-2002.html
  7. 7.
    Fokou Pelap, G., Faron-Zucker, C., Gandon, F.: Semantic models in web based educational system integration. In: Proceedings of the 14th International Conference on Web Information Systems and Technologies, WEBIST 2018, Seville, Spain, 18–20 September 2018, pp. 78–89 (2018).  https://doi.org/10.5220/0006940000780089
  8. 8.
    Gascueña, J.M., Fernández-Caballero, A., González, P.: Domain ontology for personalized e-learning in educational systems. In: IEEE International Conference on Advanced Learning Technologies, (ICALT), pp. 456–458, July 2006Google Scholar
  9. 9.
    Guangzuo, C., Fei, C., Hu, C., Shufang, L.: Ontoedu: a case study of ontology-based education grid system for e-learning. In: GCCCE 2004 International conference, Hong Kong (2004)Google Scholar
  10. 10.
    Gueffaz, M., Deslis, J., Moissinac, J.C.: Curriculum data enrichment with ontologies. In: Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics, WIMS 2014, pp. 441–446. ACM, New York (2014)Google Scholar
  11. 11.
    Hyun-Sook, C., Jung-Min, K.: Ontology design for creating adaptive learning path in e-learning environment. In: Proceedings of International MultiConference of Engineers and Computer Scientists, IMECS 2012, pp. 585–5886 (2012)Google Scholar
  12. 12.
    Chung, H.-S., Kim, J.-M.: Semantic model of syllabus and learning ontology for intelligent learning system. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS (LNAI), vol. 8733, pp. 175–183. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11289-3_18CrossRefGoogle Scholar
  13. 13.
    Jaffro, L.: Les objets de l’éducation: quelle ontologie? Revue de métaphysique et de morale 4(56), 429–448 (Septembre 2007)Google Scholar
  14. 14.
    Jean, S., Bellatreche, L., Fokou, G., Baron, M., Khouri, S.: OntoDBench: novel benchmarking system for ontology-based databases. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 897–914. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33615-7_32CrossRefGoogle Scholar
  15. 15.
    Khan, R., Amjad, M.: Performance testing (load) of web applications based on test case management. Perspect. Sci. 8, 355–357 (2016). Recent Trends in Engineering and Material SciencesCrossRefGoogle Scholar
  16. 16.
    Khan, R., Amjad, M.: Performance testing (load) of web applications based on test case management. Perspect. Sci. 8, 355–357 (2016).  https://doi.org/10.1016/j.pisc.2016.04.073. http://www.sciencedirect.com/science/article/pii/S2213020916300957. Recent Trends in Engineering and Material SciencesCrossRefGoogle Scholar
  17. 17.
    Michel, F., Zucker, C.F., Gargominy, O., Gandon, F.: Integration of web apis and linked data using SPARQL micro-services-application to biodiversity use cases. Information 9(12), 310 (2018).  https://doi.org/10.3390/info9120310. http://www.mdpi.com/2078-2489/9/12/310CrossRefGoogle Scholar
  18. 18.
    Ministère de l’éducation nationale: Code de l’éducation, Version consolidée au 1 janvier 2018 (Janvier 2018). https://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006071191
  19. 19.
    Mironov, V., Seethappan, N., Blondé, W., Antezana, E., Lindi, B., Kuiper, M.: Benchmarking triple stores with biological data. CoRR abs/1012.1632 (2010). http://arxiv.org/abs/1012.1632
  20. 20.
    Rani, M., Srivastava, K.V., Vyas, O.P.: An ontological learning management system. Comput. Appl. Eng. Educ. 24(5), 706–722 (2016)CrossRefGoogle Scholar
  21. 21.
    Réseau Canopé: ScoLomFR : Outil de description des ressources numériques de l’enseignement scolaire (Janvier 2011). https://www.reseau-canope.fr/scolomfr/accueil.html
  22. 22.
    Rocha, O.R., Faron-Zucker, C., Pelap, G.F.: A formalization of the french elementary school curricula. In: Knowledge Engineering and Knowledge Management - EKM and Drift-an-LOD, Bologna, Italy, Revised Selected Papers, pp. 82–94 (2016)Google Scholar
  23. 23.
    Klabnik, S., Yehuda Katz, D.G.T.K., Resnick, E.: A specification for building apis in json. https://jsonapi.org/format/. Accessed 20 Dec 2018
  24. 24.
    Wu, H., Fujiwara, T., Yamamoto, Y., Bolleman, J.T., Yamaguchi, A.: Biobenchmark toyama 2012: an evaluation of the performance of triple stores on biological data. J. Biomed. Semant. 5(1), 32 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University Côte d’Azur, CNRS, INRIA, I3SNiceFrance
  2. 2.University of DschangDschangCameroon
  3. 3.EducleverParisFrance

Personalised recommendations