Advertisement

LumNet: A Deep Neural Network for Lumbar Paraspinal Muscles Segmentation

  • Yingdi ZhangEmail author
  • Zelin Shi
  • Huan Wang
  • Chongnan Yan
  • Lanbo Wang
  • Yueming Mu
  • Yunpeng Liu
  • Shuhang Wu
  • Tianci Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11919)

Abstract

Lumber paraspinal muscles (LPM) segmentation is of essential importance in predicting response to treatment of low back pain. To date, all LPM segmentation methods are manually based instead of automatic. Manual segmentation of LPM requires vast radiological knowledge and experience. Moreover, the manual segmentation usually induces subjective variance. Therefore, an automatic segmentation is desireable. It is challenging to achieve automatic segmentation mainly because the ambiguous boundary of the LPM can be very difficult to locate. In this paper, we present a novel encoder-decoder and attention based deep convolutional neural network (CNN) to address this problem. With the help of skip connections, the encoder-decoder structure can capture both shadow and deep features which represent local and global information. Pre-trained VGG11 in ImageNet performed as encoder. In the decoder part, an attention block is applied to recalibrate the input feature. With the help of attention block, meaningful features are highlighted while irrelevant features are suppressed. To fully evaluate the performance of our proposed network, we construct the first large-scale LPM segmentation dataset with 1080 images and its segmentation masks. Experimental results show that our proposed network can not only achieve a good LPM segmentation result with a high dice score of 0.94 but also outperforms other state-of-the-art segmentation methods.

Keywords

Convolutional neural networks Attention mechanism Lumber paraspinal muscles segmentation Attention mechanism 

References

  1. 1.
    Balagué, F., Mannion, A.F., Pellisé, F., Cedraschi, C.: Non-specific low back pain. Lancet 379(9814), 482–491 (2012)CrossRefGoogle Scholar
  2. 2.
    Shahidi, B., et al.: Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine 42(8), 616–623 (2017)CrossRefGoogle Scholar
  3. 3.
    Beneck, G.J., Kulig, K.: Multifidus atrophy is localized and bilateral in active persons with chronic unilateral low back pain. Arch. Phys. Med. Rehabil. 93(2), 300–306 (2012)CrossRefGoogle Scholar
  4. 4.
    Battaglia, P.J., Maeda, Y., Welk, A., Hough, B., Kettner, N.: Reliability of the Goutallier classification in quantifying muscle fatty degeneration in the lumbar multifidus using magnetic resonance imaging. J. Manipulative Physiol. Ther. 37(3), 190–197 (2014)CrossRefGoogle Scholar
  5. 5.
    Ranson, C., Burnett, A., O’sullivan, P., Batt, M., Kerslake, R.: The lumbar paraspinal muscle morphometry of fast bowlers in cricket. Clin. J. Sport Med. 18(1), 31–37 (2008)CrossRefGoogle Scholar
  6. 6.
    Engstrom, C.M., Fripp, J., Jurcak, V., Walker, D.G., Salvado, O., Crozier, S.: Segmentation of the quadratus lumborum muscle using statistical shape modeling. J. Magn. Reson. Imaging 33(6), 1422–1429 (2011)CrossRefGoogle Scholar
  7. 7.
    Xiao, Y., Fortin, M., Battié, M.C., Rivaz, H.: Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles. Eur. Spine J. 27, 2442–2448 (2018)CrossRefGoogle Scholar
  8. 8.
    Mikheev, A., Nevsky, G., Govindan, S., Grossman, R., Rusinek, H.: Fully automatic segmentation of the brain from T1-weighted mri using bridge burner algorithm. J. Magn. Reson. Imaging 27(6), 1235–1241 (2008)CrossRefGoogle Scholar
  9. 9.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
  10. 10.
    Szegedy, C.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  11. 11.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  12. 12.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  14. 14.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks, vol. 7. arXiv preprint arXiv:1709.01507 (2017)
  15. 15.
    Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)Google Scholar
  16. 16.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  17. 17.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)Google Scholar
  18. 18.
    Shen, L., Sun, G., Huang, Q., Wang, S., Lin, Z., Wu, E.: Multi-level discriminative dictionary learning with application to large scale image classification. IEEE Trans. Image Process. 24(10), 3109–3123 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)Google Scholar
  20. 20.
    Paszke, A.: Automatic differentiation in PyTorch (2017)Google Scholar
  21. 21.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)
  22. 22.
    Chang, H.-H., Zhuang, A.H., Valentino, D.J., Chu, W.-C.: Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47(1), 122–135 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yingdi Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  • Zelin Shi
    • 1
    • 4
    • 5
  • Huan Wang
    • 6
  • Chongnan Yan
    • 6
  • Lanbo Wang
    • 6
  • Yueming Mu
    • 6
  • Yunpeng Liu
    • 1
    • 4
    • 5
  • Shuhang Wu
    • 1
    • 4
    • 5
  • Tianci Liu
    • 1
    • 4
    • 5
  1. 1.Shenyang Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.Institute for Robotics and Intelligent ManufacturingChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Key Lab of Opto-Electronic Information ProcessShenyangChina
  5. 5.The Key Lab of Image Understanding and Computer VisionShenyangChina
  6. 6.Spine Surgery DepartmentShengjing HospitalShenyangChina

Personalised recommendations