Advertisement

A Biased Random Key Genetic Algorithm with Rollout Evaluations for the Resource Constraint Job Scheduling Problem

  • Christian Blum
  • Dhananjay Thiruvady
  • Andreas T. ErnstEmail author
  • Matthias Horn
  • Günther R. Raidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11919)

Abstract

The resource constraint job scheduling problem considered in this work is a difficult optimization problem that was defined in the context of the transportation of minerals from mines to ports. The main characteristics are that all jobs share a common limiting resource and that the objective function concerns the minimization of the total weighted tardiness of all jobs. The algorithms proposed in the literature for this problem have a common disadvantage: they require a huge amount of computation time. Therefore, the main goal of this work is the development of an algorithm that can compete with the state of the art, while using much less computational resources. In fact, our experimental results show that the biased random key genetic algorithm that we propose significantly outperforms the state-of-the-art algorithm from the literature both in terms of solution quality and computation time.

Keywords

Job scheduling Genetic algorithm Rollout evaluation 

Notes

Acknowledgements

This work was partially funded by the Doctoral Program “Vienna Graduate School on Computational Optimization”, Austrian Science Foundation (FWF) Project No. W1260-N35. Moreover, this work was partially supported by the EU H2020 Research and Innovation Program under the LOGISTAR project (Grant Agreement No. 769142).

References

  1. 1.
    Almeida, B.F., Correia, I., Saldanha-da Gama, F.: A biased random-key genetic algorithm for the project scheduling problem with flexible resources. Top 26(2), 283–308 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ballestin, F., Trautmann, N.: An iterated-local-search heuristic for the resource-constrained weighted earliness-tardiness project scheduling problem. Int. J. Prod. Res. 46, 6231–6249 (2008)CrossRefGoogle Scholar
  3. 3.
    Bertsekas, D.P., Tsitsiklis, J.N., Wu, C.: Rollout algorithms for combinatorial optimization. Journal of Heuristics 3(3), 245–262 (1997)CrossRefGoogle Scholar
  4. 4.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35, 268–308 (2003)CrossRefGoogle Scholar
  5. 5.
    Brent, O., Thiruvady, D., Gómez-Iglesias, A., Garcia-Flores, R.: A parallel lagrangian-ACO heuristic for project scheduling. In: IEEE Congress on Evolutionary Computation (CEC 2014), pp. 2985–2991. IEEE (2014)Google Scholar
  6. 6.
    Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112, 3–41 (1999)CrossRefGoogle Scholar
  7. 7.
    Cohen, D., Gómez-Iglesias, A., Thiruvady, D., Ernst, A.T.: Resource constrained job scheduling with parallel constraint-based ACO. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS (LNAI), vol. 10142, pp. 266–278. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51691-2_23CrossRefGoogle Scholar
  8. 8.
    Demeulemeester, E., Herroelen, W.: Project Scheduling: A Research Handbook. Kluwer, Boston (2002)zbMATHGoogle Scholar
  9. 9.
    Ernst, A.T., Singh, G.: Lagrangian particle swarm optimization for a resource constrained machine scheduling problem. In: Li, X. (ed.) 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, Institute of Electrical and Electronics Engineers, United States (2012).  https://doi.org/10.1109/CEC.2012.6256177
  10. 10.
    de Faria Alixandre, B.F., Dorn, M.: D-BRKGA: a distributed biased random-key genetic algorithm. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1398–1405 (2017)Google Scholar
  11. 11.
    Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2011)CrossRefGoogle Scholar
  12. 12.
    Júnior, B., Pinheiro, P., Coelho, P.: A parallel biased random-key genetic algorithm with multiple populations applied to irregular strip packing problems. Math. Probl. Eng. 2017, 1–11 (2017).  https://doi.org/10.1155/2017/1670709MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lawler, E.L.: A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness. Ann. Discrete Math. 1, 331–342 (1977)MathSciNetCrossRefGoogle Scholar
  14. 14.
    López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Marriott, K., Stuckey, P.: Programming with Constraints. MIT Press, Cambridge (1998)CrossRefGoogle Scholar
  16. 16.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  17. 17.
    Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources. Springer, Berlin (2003)CrossRefGoogle Scholar
  18. 18.
    Nguyen, S., Thiruvady, D., Ernst, A.T., Alahakoon, D.: A hybrid differential evolution algorithm with column generation for resource constrained job scheduling. Comput. Oper. Res. 109, 273–287 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pinto, B.Q., Ribeiro, C.C., Rosseti, I., Plastino, A.: A biased random-key genetic algorithm for the maximum quasi-clique problem. Eur. J. Oper. Res. 271(3), 849–865 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Singh, G., Ernst, A.T.: Resource constraint scheduling with a fractional shared resource. Oper. Res. Lett. 39(5), 363–368 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Thiruvady, D., Singh, G., Ernst, A.T., Meyer, B.: Constraint-based ACO for a shared resource constrained scheduling problem. Int. J. Prod. Econ. 141(1), 230–242 (2012)CrossRefGoogle Scholar
  22. 22.
    Thiruvady, D., Singh, G., Ernst, A.T.: Hybrids of integer programming and ACO for resource constrained job scheduling. In: Blesa, M.J., Blum, C., Voß, S. (eds.) HM 2014. LNCS, vol. 8457, pp. 130–144. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07644-7_10CrossRefGoogle Scholar
  23. 23.
    Thiruvady, D., Wallace, M., Gu, H., Schutt, A.: A lagrangian relaxation and ACO hybrid for resource constrained project scheduling with discounted cash flows. J. Heuristics 20(6), 643–676 (2014)CrossRefGoogle Scholar
  24. 24.
    Thiruvady, D., Blum, C., Ernst, A.T.: Maximising the net present value of project schedules using CMSA and parallel ACO. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 16–30. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05983-5_2CrossRefGoogle Scholar
  25. 25.
    Thiruvady, D., Blum, C., Ernst, A.T.: Solution merging in metaheuristics for resource constrained job scheduling (2019, working paper)Google Scholar
  26. 26.
    Wolsey, L.A.: Integer Programming. Wiley-Interscience, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Blum
    • 1
  • Dhananjay Thiruvady
    • 3
  • Andreas T. Ernst
    • 2
    Email author
  • Matthias Horn
    • 4
  • Günther R. Raidl
    • 4
  1. 1.Artificial Intelligence Research Institute (IIIA-CSIC)Campus of the UABBellaterraSpain
  2. 2.School of Mathematical SciencesMonash UniversityMelbourneAustralia
  3. 3.School of Information TechnologyDeakin UniversityGeelongAustralia
  4. 4.Institute of Logic and ComputationTU WienViennaAustria

Personalised recommendations