Constructing CP-Nets from Users Past Selection
Abstract
Although recommender systems have been significantly developed for providing customized services to users in various domains, they still have some limitations regarding the extraction of users’ conditional preferences from their past selections when they are in a dynamic context. We propose a framework to automatically extract and learn users’ conditional and qualitative preferences in a gamified system taking into consideration the players’ past behaviour, without asking any information from the players. To do that, we construct CP-nets modeling users preferences via a procedure that employs multiple Information Criterion score functions within an heuristic algorithm to learn a Bayesian network. The approach has been validated experimentally in the challenge recommendation domain in an urban mobility gamified system.
Keywords
CP-net Bayesian network Recommender system GamificationReferences
- 1.Amatriain, X., Basilico, J.: Past, present, and future of recommender systems: an industry perspective. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys 2016, pp. 211–214. ACM, New York (2016)Google Scholar
- 2.Bigot, D., Mengin, J., Zanuttini, B.: Learning probabilistic CP-nets from observations of optimal items. In: STAIRS, pp. 81–90 (2014)Google Scholar
- 3.Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Int. Res. 21(1), 135–191 (2004)MathSciNetzbMATHGoogle Scholar
- 4.Brun, Y., et al.: A design space for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 33–50. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_2CrossRefGoogle Scholar
- 5.Carvalho, A.M.: Scoring functions for learning Bayesian networks. INESC-ID, Technical report (2009)Google Scholar
- 6.Chevaleyre, Y., Koriche, F., Lang, J., Mengin, J., Zanuttini, B.: Learning ordinal preferences on multiattribute domains: the case of CP-nets. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 273–296. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6_13CrossRefzbMATHGoogle Scholar
- 7.Coelho, H., et al.: An efficient procedure for collective decision-making with CP-nets. In: ECAI 2010: 19th European Conference on Artificial Intelligence, vol. 215, p. 375 (2010)Google Scholar
- 8.Cornelio, C., Goldsmith, J., Mattei, N., Rossi, F., Venable, K.B.: Dynamic and probabilistic CP-nets. In: MPREF 2013 (2013)Google Scholar
- 9.Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
- 10.Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)MathSciNetCrossRefGoogle Scholar
- 11.Guerin, J.T., Allen, T.E., Goldsmith, J.: Learning CP-net preferences online from user queries. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 208–220. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41575-3_16CrossRefGoogle Scholar
- 12.Jensen, F.V.: An Introduction to Bayesian Networks. UCL Press, London (1996)Google Scholar
- 13.Khoshkangini, R., Pini, M.S., Rossi, F.: A design of context-aware framework for conditional preferences of group of users. In: Lee, R. (ed.) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. SCI, vol. 653, pp. 97–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33810-1_8CrossRefGoogle Scholar
- 14.Khoshkangini, R., Pini, M.S., Rossi, F.: A self-adaptive context-aware group recommender system. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 250–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_19CrossRefGoogle Scholar
- 15.Khoshkangini, R., Valetto, G., Marconi, A.: Generating personalized challenges to enhance the persuasive power of gamification. In: Personalization in Persuasive Technology Workshop (2017)Google Scholar
- 16.Khoshkangini, R., Valetto, G., Marconi, A.: Automatic generation and recommendation of personalized challenges for gamification. In: User Modeling and User-Adapted Interaction (UMUAI) (2019, under review)Google Scholar
- 17.Koriche, F., Zanuttini, B.: Learning conditional preference networks. Artif. Intell. 174(11), 685–703 (2010)MathSciNetCrossRefGoogle Scholar
- 18.Kursa, M.B., Rudnicki, W.R., et al.: Feature selection with the boruta package. J. Stat. Softw. 36(11), 1–13 (2010)CrossRefGoogle Scholar
- 19.Lee, C., Lee, G.G.: Information gain and divergence-based feature selection for machine learning-based text categorization. Inf. Process. Manag. 42(1), 155–165 (2006)CrossRefGoogle Scholar
- 20.Lessel, P., Altmeyer, M., Krüger, A.: Analysis of recycling capabilities of individuals and crowds to encourage and educate people to separate their garbage playfully. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015 (2015)Google Scholar
- 21.Liu, Z., Malone, B., Yuan, C.: Empirical evaluation of scoring functions for Bayesian network model selection. BMC Bioinform. 13(15), S14 (2012)CrossRefGoogle Scholar
- 22.Lopes, R., Bidarra, R.: Adaptivity challenges in games and simulations: a survey. IEEE Trans. Comput. Intell. AI Games 3(2), 85–99 (2011)CrossRefGoogle Scholar
- 23.Marchetti-Spaccamela, A., Vitaletti, A., Becchetti, L., Colesanti, U.: Self-adaptive recommendation systems: models and experimental analysis. In: Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems (2008)Google Scholar
- 24.Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0745-0CrossRefzbMATHGoogle Scholar
- 25.Ono, C., Kurokawa, M., Motomura, Y., Asoh, H.: A context-aware movie preference model using a Bayesian network for recommendation and promotion. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 247–257. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73078-1_28CrossRefGoogle Scholar
- 26.Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach Author (2009)Google Scholar
- 27.Yamaoka, K., Nakagawa, T., Uno, T.: Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokinet. Biopharm. 6(2), 165–175 (1978)CrossRefGoogle Scholar