Advertisement

Synthesis of the Two-Level Intelligent Hierarchical Control System of the Mobile Robot

  • E. R. Zeynalov
  • A. S. AliyevaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1095)

Abstract

The actual problems related to the operation of high-quality intelligent control systems under the conditions of autonomy of two-wheeled mobile robots have been investigated in the paper. The synthesis method of the two-level intelligent control system of two-wheeled mobile robot for a dynamic object written by a multiply connected nonlinear model is proposed. According to the proposed method, an algorithmic support of the synthesis problem of a two-level intelligent control system is developed on the bases of fuzzy logic and finite automata. One of the advantages of the proposed in the paper method is to provide the activity of a two-wheel mobile robot, quickly, with high dynamic accuracy and without collision with barriers in the environment of several obstacles.

Keywords

Two-wheeled mobile robots Intelligent two-level hierarchical control Fuzzy logic T-S controller Finite automata Stateflow 

References

  1. 1.
    Krogh, B.H.: A generalized potential field approach to obstacle avoidance control. In: International Robotics Research Conference, Bethlehem, PA (1984)Google Scholar
  2. 2.
    García Sánchez, J.R.: Diseño y construcción de un robot móvil, aplicando el método de campospotenciales en la evasión de obstáculos. Tesis de Maestría. CIDETEC delInstitutoPolitécnicoNacional, Mexico City, Mexico (2008)Google Scholar
  3. 3.
    Sira-Ramirez, H., Agrawal, S.K.: Differentially Flat Systems. Marcel Dekker, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Silva-Ortigoza, R., Marcelino-Aranda, M., Silva-Ortigoza, G., Hernández-Guzmán, V.M., Molina-Vilchis, M.A., Saldaña-González, G., Herrera-Lozada, J.C., Olguín-Carbajal, M.: Wheeled mobile robots: a review. IEEE Latin Am. Trans. 10(6), 2209–2217 (2012)CrossRefGoogle Scholar
  5. 5.
    Silva-Ortigoza, R., Márquez-Sánchez, C., Marcelino-Aranda, M., Marciano-Melchor, M., Silva-Ortigoza, G., Bautista-Quintero, R., Ramos-Silvestre, E.R., Rivera-Díaz, J.C., Muñoz-Carrillo, D.: Construction of a WMR for trajectory tracking control: experimental results. Sci. World J. 2013, 1–17 (2013)CrossRefGoogle Scholar
  6. 6.
    Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000)CrossRefGoogle Scholar
  7. 7.
    Vidal Calleja, T.A.: Generalización del método de campospotencialesartificiales para unvehículoarticulado. Tesis de Maestría. Sección de Mecatrónicadel Departamento de IngenieríaEléctrica del CINVESTAV-IPN, Mexico City, Mexico (2002)Google Scholar
  8. 8.
  9. 9.
    Aliyev, R.A., et al.: Robotic Control Systems. Nargiz, Baku (2004)Google Scholar
  10. 10.
    Jafarov, S.M., Zeynalov, E.R., Mustafayeva, A.M.: Synthesis of robust controller-regulators for omnidirectional mobile robot with irregular movement. Proc. Comput. Sci. J. 102, 469–476 (2016)CrossRefGoogle Scholar
  11. 11.
    Jafarov, S.M., Zeynalov, E.R., Mustafayeva, A.M.: Synthesis of the optimal fuzzy T-S controller for the mobile robot using the chaos theory. Proc. Comput. Sci. J. 102, 302–308 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Azerbaijan State Oil and Industry UniversityBakuAzerbaijan
  2. 2.Institute of Control Systems of ANASBakuAzerbaijan

Personalised recommendations