Advertisement

Thermodynamic Modeling of the Phase Diagram for Cu2SnS3-Cu2SnSe3 System

  • A. N. Mammadov
  • I. Dz. Alverdiev
  • Z. S. AlievEmail author
  • D. B. Tagiev
  • M. B. Babanly
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1095)

Abstract

The phase diagram of the Cu2SnS3-Cu2SnSe3 system was plotted by thermodynamic calculations. Experimental data from differential thermal (DTA) and X-ray diffraction (XRD) analyses have used for the calculation. From the fundamental principles of thermodynamics for heterogeneous equilibria, new equations have been obtained for the direct calculation of the coordinates for (Cu2SnS3)1-x(Cu2SnSe3)x liquid and solid solutions. The parameters of the analytical dependencies of the Gibbs free energy within the asymmetric version of the model of regular solutions were determined by means the multipurpose genetic algorithm (MGA), whereas the boundaries of solid solutions are determined based on Gibbs function for the internal stability. Analytical dependencies between the variables and formation thermodynamic functions for the compounds allowed us to estimate the sensitivity of the calculated data with the input data. It was established that, the coordinates of the liquidus and solidus curves are insensitive to formation enthalpy of the Cu2SnS3 and Cu2SnSe3 compounds. At the same time, a high sensitivity of the liquidus and solidus coordinates to the excess free energy values of solutions was observed. A 3D model of the Gibbs energy dependences on compositions and temperatures was visualized.

Keywords

Phase diagrams Cu2SnS3-Cu2SnSe3 system Thermodynamic modeling Multipurpose genetic algorithm 

Notes

Acknowledgments

This work was performed in the frame of a scientific program of the international laboratory between the Institute of Catalysis and Inorganic Chemistry of the National Academy of Sciences of Azerbaijan (Azerbaijan) and Centro de Fısica de Materials at Donostia (Spain).

References

  1. 1.
    Te, S.: Applications of Chalcogenides. Ed. by G.K. Ahluwalia. Springer (2016)Google Scholar
  2. 2.
    Yusibov, Y.A., Alverdiev, I.D., Mashadieva, L.F., Babanly, D.M., Mamedov, A.N., Babanly, M.B.: Experimental study and 3D modeling of the phase diagram of the Ag–Sn–Se system. Russ. J. Inorg. Chem. 63(12), 1622–1635 (2018).  https://doi.org/10.1134/S0036023618120227CrossRefGoogle Scholar
  3. 3.
    Bayazıt, T., Olgar, M.A., Küçükömeroğlu, T., Bacaksız, E., Tomakin, M.: Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn(S,Se)3 (CTSSe) thin films using dip-coated Cu–Sn precursor. J. Mater. Sci. Mater. Electron. (2019).  https://doi.org/10.1007/s10854-019-01622-4CrossRefGoogle Scholar
  4. 4.
    Shigemi, A., Maeda, T., Wada, T.: First-principles calculation of Cu2SnS3 and related compounds. Phys. Status Solidi (b) 252(6), 1230–1234 (2015).  https://doi.org/10.1002/pssb.201400346CrossRefGoogle Scholar
  5. 5.
    Choi, S.G., Kang, J., Li, J., Haneef, H., Podraza, N.J., Beall, C., Repins, I.L.: Optical function spectra and bandgap energy of Cu2SnSe3. Appl. Phys. Lett. 106(4), 043902 (2015).  https://doi.org/10.1063/1.4907202CrossRefGoogle Scholar
  6. 6.
    Preuss, M., Wessing, S., Rudolph, G., Sadowski, G.: Solving phase equilibrium problems by means of avoidance-based multiobjectivization. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, Part E.58, pp. 1159–1169. Springer, Heidelberg (2015). Evol. Comput.  https://doi.org/10.1007/978-3-662-43505-2_58CrossRefGoogle Scholar
  7. 7.
    Stan, M., Reardon, B.J.: A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams. Calphad 27, 319–323 (2003)CrossRefGoogle Scholar
  8. 8.
    Duong, T.C., Hackenberg, R.E., Landa, A., Honarmandi, A., Talapatra, A.: Revisiting thermodynamics and kinetic diffusivities of uranium–niobium with Bayesian uncertainty analysis. Calphad 55, 219–230 (2016)CrossRefGoogle Scholar
  9. 9.
    Mammadov, A.N., Aliev, Z.S., Babanly, M.B.: Study of the uncertainty heterogeneous phase equilibria areas in the binary YbTe-SnTe alloy system. In: Aliev, R., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Sadikoglu, F. (eds.) 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing - ICAFS-2018/Advances in Intelligent Systems and Computing, vol. 896, pp. 815–822. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-04164-9_107Google Scholar
  10. 10.
    Mamedov, A.N., Akhmedova, N.Y., Asadov, C.M., Babanly, N.B., Mamedov, E.I.: Thermodynamic analysis and defection formation in alloys on the basis of lead selenide containing copper. Chem. Probl. 1(17), 16–25 (2019).  https://doi.org/10.32737/2221-8688-2019-1-16-25CrossRefGoogle Scholar
  11. 11.
    Babanly, M.B., Yusibov, Y.A., Abishev, V.T.: Three-component chalcogenides based on copper and silver. BGU, Baku (1993). (in Russian)Google Scholar
  12. 12.
    Stolen, S., Grande, T.: Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects. Wiley, Chichester (2004)Google Scholar
  13. 13.
    Mamedov, A.N., Tagiev, E.R., Aliev, Z.S., Babanly, M.B.: Phase boundaries of the (YbTe)x(PbTe)1-x and (YbTe)x(SnTe)1-x solid solutions series. Russ. J. Inorg. Mater. 52(6), 543–545 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. N. Mammadov
    • 1
    • 2
  • I. Dz. Alverdiev
    • 3
  • Z. S. Aliev
    • 4
    Email author
  • D. B. Tagiev
    • 1
  • M. B. Babanly
    • 1
  1. 1.Nagiyev Institute of Catalysis and Inorganic Chemistry of ANASBakuAzerbaijan
  2. 2.Azerbaijan Technical UniversityBakuAzerbaijan
  3. 3.Ganja State UniversityGanjaAzerbaijan
  4. 4.Azerbaijan State Oil and Industrial UniversityBakuAzerbaijan

Personalised recommendations