Advertisement

Commercial Aspects of Biomass Deconstruction with Ionic Liquids

  • Aida R. Abouelela
  • Florence V. Gschwend
  • Francisco Malaret
  • Jason P. HallettEmail author
Chapter
  • 77 Downloads
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

The adaption of any new process from academic research to industrial-scale requires a robust economic profile demonstrating it can compete with peer technologies. IonoSolv process is a recently developed ionic liquid-based pretreatment that pioneers the use of low-cost ionic liquids for biomass fractionation. The use of low-cost protic ionic liquids elevated the techno-economic profile of the process, making its potential commercialization highly viable. In this chapter, the authors give an overview of key process-related aspects that underpinned this transformation, with special highlights on the progressive milestones achieved in developing a promising commercial ionic liquid-based pretreatment process. We also highlight the current challenges and knowledge gaps that need to be tackled to further elevate the technology readiness level.

Keywords

Biomass deconstruction Biorefinery Cellulose Delignification ionoSolv 

References

  1. 1.
    Beller M, Centi G, Sun L (2017) Chemistry future: priorities and opportunities from the sustainability perspective. ChemSusChem 10:6–13.  https://doi.org/10.1002/cssc.201601739CrossRefPubMedGoogle Scholar
  2. 2.
    Fulton LM, Lynd LR, Körner A, Greene N, Tonachel LR (2015) The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Biorefining 9:476–483.  https://doi.org/10.1002/bbb.1559
  3. 3.
    IPCC (2015) Foreword, preface, dedication and in memoriam. Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. pp. v–vi, Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781107415416
  4. 4.
    Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G, Jackson RD, Jordan N, Kaffka S, Kline KL, Lynd LR (2014) Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol 48:7200–7203.  https://doi.org/10.1021/es5025433CrossRefPubMedGoogle Scholar
  5. 5.
    Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559.  https://doi.org/10.1039/C5PY00263JCrossRefGoogle Scholar
  6. 6.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686.  https://doi.org/10.1016/j.biortech.2004.06.025CrossRefGoogle Scholar
  7. 7.
    Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685.  https://doi.org/10.1016/j.biotechadv.2011.05.005CrossRefPubMedGoogle Scholar
  8. 8.
    Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7.  https://doi.org/10.1186/s40643-017-0137-9CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861.  https://doi.org/10.1016/j.biortech.2009.11.093CrossRefPubMedGoogle Scholar
  10. 10.
    Albers SC, Berklund AM, Graff GD (2016) The rise and fall of innovation in biofuels. Nat Biotechnol 34:814–821.  https://doi.org/10.1038/nbt.3644CrossRefPubMedGoogle Scholar
  11. 11.
    Oliveira FM, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJ (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173.  https://doi.org/10.1016/j.biortech.2012.12.030CrossRefPubMedGoogle Scholar
  12. 12.
    Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1.  https://doi.org/10.1186/1754-6834-3-1CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700.  https://doi.org/10.1016/j.procbio.2005.04.006CrossRefGoogle Scholar
  14. 14.
    Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75.  https://doi.org/10.1016/j.biortech.2015.08.051CrossRefPubMedGoogle Scholar
  15. 15.
    Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827.  https://doi.org/10.1007/s00253-009-1883-1CrossRefPubMedGoogle Scholar
  16. 16.
    Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69.  https://doi.org/10.1039/B607614ACrossRefGoogle Scholar
  17. 17.
    An Y-X, Zong M-H, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171.  https://doi.org/10.1016/j.biortech.2015.05.064CrossRefPubMedGoogle Scholar
  18. 18.
    Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem 10:1280–1283.  https://doi.org/10.1039/b810392eCrossRefGoogle Scholar
  19. 19.
    Rogers RD, Seddon KR (2003) Ionic liquids–solvents of the future? Science 302:792–793.  https://doi.org/10.1126/science.1090313CrossRefGoogle Scholar
  20. 20.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150.  https://doi.org/10.1039/B006677JCrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    García-Verdugo E, Altava B, Burguete MI, Lozano P, Luis SV (2015) Ionic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chem 17:2693–2713.  https://doi.org/10.1039/C4GC02388ACrossRefGoogle Scholar
  22. 22.
    Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102.  https://doi.org/10.1039/C7GC00705ACrossRefGoogle Scholar
  23. 23.
    Jørgensen H, Pinelo M (2017) Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod Biorefining 11:150–167.  https://doi.org/10.1002/bbb.1724
  24. 24.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843.  https://doi.org/10.1126/science.1246843CrossRefPubMedGoogle Scholar
  25. 25.
    Yuan T-Q, Wang W, Zhang L-M, Xu F, Sun R-C (2013) Reconstitution of cellulose and lignin after [C2mim][OAc] pretreatment and its relation to enzymatic hydrolysis. Biotechnol Bioeng 110:729–736.  https://doi.org/10.1002/bit.24743CrossRefPubMedGoogle Scholar
  26. 26.
    Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906.  https://doi.org/10.1016/j.biortech.2009.10.066CrossRefPubMedGoogle Scholar
  27. 27.
    Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75.  https://doi.org/10.1002/bit.22386CrossRefPubMedGoogle Scholar
  28. 28.
    Shi J, Thompson VS, Yancey NA, Stavila V, Simmons BA, Singh S (2017) Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels 4:63–72.  https://doi.org/10.4155/bfs.12.82
  29. 29.
    George A, Brandt A, Tran K, Zahari SMNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734.  https://doi.org/10.1039/C4GC01208ACrossRefGoogle Scholar
  30. 30.
    Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP (2014) Inexpensive ionic liquids: [HSO4]-based solvent production at bulk scale. Green Chem 16:3098–3106.  https://doi.org/10.1039/C4GC00016A
  31. 31.
    De Rose A, Buna M, Strazza C, Olivieri N, Stevens T, Peeters L, Tawil-Jamault D (2017) Technology readiness level: guidance principles for renewable energy technologies. Report EUR 27988 EN, European Commission, Brussels. https://doi.org:10.2777/577767
  32. 32.
    Gschwend FJV, Brandt A, Chambon CL, Tu W-C, Weigand L, Hallett JP (2016) Pretreatment of lignocellulosic biomass with low-cost ionic liquids. J Vis Exp 114:e54246. http://doi:10.3791/54246
  33. 33.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975.  https://doi.org/10.1021/ja025790mCrossRefPubMedGoogle Scholar
  34. 34.
    Lynd LR (2017) The grand challenge of cellulosic biofuels. Nat Biotechnol 35:912–915.  https://doi.org/10.1038/nbt.3976CrossRefPubMedGoogle Scholar
  35. 35.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083.  https://doi.org/10.1021/cr980032t
  36. 36.
    Dai C, Zhang J, Huang C, Lei Z (2017) Ionic liquids in selective oxidation: catalysts and solvents. Chem Rev 117:6929–6983.  https://doi.org/10.1021/acs.chemrev.7b00030CrossRefPubMedGoogle Scholar
  37. 37.
    Chen Y, Zhang X, Zhang D, Yu P, Ma Y (2011) High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49:573–580.  https://doi.org/10.1016/j.carbon.2010.09.060CrossRefGoogle Scholar
  38. 38.
    Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93.  https://doi.org/10.1016/j.rser.2013.06.033CrossRefGoogle Scholar
  39. 39.
    Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32.  https://doi.org/10.1039/C0EE00246ACrossRefGoogle Scholar
  40. 40.
    Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose-N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188.  https://doi.org/10.1007/s10570-008-9256-y
  41. 41.
    Zhang Y-HP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7: 644–648.  https://doi.org/10.1021/bm050799c
  42. 42.
    Charles G (1933) Cellulose solution and cellulose derivative and process of making same, US patent no 1,924,238. US Patent and Trademark Office, WashingtonGoogle Scholar
  43. 43.
    Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929.  https://doi.org/10.1039/c0ee00667jCrossRefGoogle Scholar
  44. 44.
    Michud A, Tanttu M, Asaadi S, Ma Y, Netti E, Kääriainen P, Persson A, Berntsson A, Hummel M, Sixta H (2016) Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell. Text Res J 86:543–552.  https://doi.org/10.1177/0040517515591774CrossRefGoogle Scholar
  45. 45.
    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugar to 5-hydroxymethylfurfural. Science 316:1597–1600.  https://doi.org/10.1126/science.1141199CrossRefPubMedGoogle Scholar
  46. 46.
    van Putten RJ, van der Waal JC, de Jong ED, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499−1597.  https://doi.org/10.1021/cr300182k
  47. 47.
    Werpy T, Petersen G (eds.) (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy, National Renewable Energy Laboratory, Golden, CO.  https://doi.org/10.2172/15008859
  48. 48.
    Eminov S, Brandt A, Wilton-Ely JDET, Hallett JP (2016) The highly selective and near-quantitative conversion of glucose to 5-hydroxymethylfurfural using ionic liquids. PLoS ONE 11:e0163835.  https://doi.org/10.1371/journal.pone.0163835CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793.  https://doi.org/10.1039/c0gc00401dCrossRefGoogle Scholar
  50. 50.
    Hou Q, Li W, Zhen M, Liu L, Chen Y, Yang Q, Huang F, Zhang S, Ju M (2017) An ionic liquid–organic solvent biphasic system for efficient production of 5-hydroxymethylfurfural from carbohydrates at high concentrations. RSC Adv 7:47288–47296.  https://doi.org/10.1039/C7RA10237BCrossRefGoogle Scholar
  51. 51.
    Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A Gen 363:93–99.  https://doi.org/10.1016/j.apcata.2009.04.049CrossRefGoogle Scholar
  52. 52.
    Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237.  https://doi.org/10.1021/cr068040uCrossRefPubMedGoogle Scholar
  53. 53.
    Greaves TL, Kennedy DF, Mudie ST, Drummond CJ (2010) Diversity observed in the nanostructure of protic ionic liquids. J Phys Chem B 114:10022–10031.  https://doi.org/10.1021/jp103863zCrossRefPubMedGoogle Scholar
  54. 54.
    Deetlefs M, Seddon KR (2010) Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem 12:17–30.  https://doi.org/10.1039/B915049HCrossRefGoogle Scholar
  55. 55.
    Greaves TL, Weerawardena A, Krodkiewska I, Drummond CJ (2008) Protic ionic liquids: physicochemical properties and behavior as amphiphile self-assembly solvents. J Phys Chem B 112:896–905.  https://doi.org/10.1021/jp0767819CrossRefPubMedGoogle Scholar
  56. 56.
    Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ (2006) Protic ionic liquids: Solvents with tunable phase behavior and physicochemical properties. J Phys Chem B Ibid. 110:26506.  https://doi.org/10.1021/jp068102kCrossRefPubMedGoogle Scholar
  57. 57.
    Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J Am Chem Soc 125:15411–15419.  https://doi.org/10.1021/ja035783dCrossRefPubMedGoogle Scholar
  58. 58.
    Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev 115:11379–11448.  https://doi.org/10.1021/acs.chemrev.5b00158CrossRefPubMedGoogle Scholar
  59. 59.
    Penttilä A, Uusi-Kyyny P, Alopaeus V (2014) Distillable protic ionic liquid 2-(hydroxy)ethylammonium acetate (2-HEAA): density, vapor pressure, vapor–liquid equilibrium, and solid–liquid equilibrium. Ind Eng Chem Res 53:19322–19330.  https://doi.org/10.1021/ie503823aCrossRefGoogle Scholar
  60. 60.
    Earle MJ, Esperança JMSS, Gilea MA, Canongia Lopes JN, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834.  https://doi.org/10.1038/nature04451CrossRefPubMedGoogle Scholar
  61. 61.
    Menne S, Vogl T, Balducci A (2014) Lithium coordination in protic ionic liquids. Phys Chem Chem Phys 16:5485–5489.  https://doi.org/10.1039/c3cp55183kCrossRefPubMedGoogle Scholar
  62. 62.
    Mayrand-Provencher L, Lin S, Lazzerini D, Rochefort D (2010) Pyridinium-based protic ionic liquids as electrolytes for RuO2 electrochemical capacitors. J Power Sour 195:5114–5121.  https://doi.org/10.1016/j.jpowsour.2010.02.073CrossRefGoogle Scholar
  63. 63.
    Kanzaki R, Kodamatani H, Tomiyasu T, Watanabe H, Umebayashi Y (2016) A pH scale for the protic ionic liquid ethylammonium nitrate. Angew Chem Int Ed 55:6266–6269.  https://doi.org/10.1002/anie.201511328CrossRefGoogle Scholar
  64. 64.
    Kanzaki R, Doi H, Song X, Hara S, Ishiguro S, Umebayashi Y (2012) Acid–base property of N–methylimidazolium-based protic ionic. J Phys Chem B 116:14146−14152.  https://doi.org/10.1021/jp308477p
  65. 65.
    Hashimoto K, Fujii K, Shibayama M (2013) Acid–base property of protic ionic liquid, 1-alkylimidazolium bis(trifluoromethanesulfonyl)amide studied by potentiometric titration. J Mol Liq 188:143–147.  https://doi.org/10.1016/j.molliq.2013.08.023CrossRefGoogle Scholar
  66. 66.
    da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1:3.  https://doi.org/10.1186/2043-7129-1-3CrossRefGoogle Scholar
  67. 67.
    Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Biorefinery 3:199–212.  https://doi.org/10.1007/s13399-013-0074-6CrossRefGoogle Scholar
  68. 68.
    Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421.  https://doi.org/10.1016/j.enconman.2010.01.015CrossRefGoogle Scholar
  69. 69.
    Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206.  https://doi.org/10.1016/j.fuproc.2016.12.007CrossRefGoogle Scholar
  70. 70.
    Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148.  https://doi.org/10.1021/jf071692eCrossRefPubMedGoogle Scholar
  71. 71.
    Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583.  https://doi.org/10.1039/c2gc36364jCrossRefGoogle Scholar
  72. 72.
    Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655.  https://doi.org/10.1039/b822702k
  73. 73.
    Cheng G, Varanasi P, Li C, Liu H, Melnichenko YuB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol 12:933–941.  https://doi.org/10.1021/bm101240zCrossRefGoogle Scholar
  74. 74.
    Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405.  https://doi.org/10.1016/j.biortech.2013.10.009CrossRefPubMedGoogle Scholar
  75. 75.
    Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenerg 81:1–8.  https://doi.org/10.1016/j.biombioe.2015.05.005CrossRefGoogle Scholar
  76. 76.
    Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G (2008) Solvation of carbohydrates in N, N′-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy study. J Phys Chem B 112:11071–11078.  https://doi.org/10.1021/jp8042895CrossRefPubMedGoogle Scholar
  77. 77.
    Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46.  https://doi.org/10.1039/B713289ACrossRefGoogle Scholar
  78. 78.
    Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar and halogen-free 1,3-dialkylimidazolium formates. Biomacromol 7:3295–3297.  https://doi.org/10.1021/bm060327dCrossRefGoogle Scholar
  79. 79.
    Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301.  https://doi.org/10.1021/jp9117437
  80. 80.
    Ab Rani MA, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH, Hallett JP, Hunt PA, Niedermeyer H, Perez-Arlandis JM, Schrems M (2011) Understanding the polarity of ionic liquids. Phys Chem Chem Phys 13:16831–16840.  https://doi.org/10.1039/c1cp21262aCrossRefPubMedGoogle Scholar
  81. 81.
    Rosatella AA, Afonso CAM (2015) The dissolution of biomass in ionic liquids towards pre-treatment approach. In: Bogel-Lukasik R (Ed.) Ionic liquids in the biorefinery concept, RSC Green Chemistry No. 36, The Royal Society of Chemistry, pp 38–64.  https://doi.org/10.1039/9781782622598-00038
  82. 82.
    Upfal J, MacFarlane DR, Forsyth SA (2007) Solvents for use in the treatment of lignin-containing materials. US patent application no 2007/0215300A1Google Scholar
  83. 83.
    Varanasi S, Schall CA, Dadi AP, Anderson J, Rao K, Kumar G, Paripati P (2011) Biomass pretreatment. US patent no 8,030,030Google Scholar
  84. 84.
    Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376.  https://doi.org/10.1002/bit.22179
  85. 85.
    Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33.  https://doi.org/10.1080/02773810701282330CrossRefGoogle Scholar
  86. 86.
    Tan SS, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345.  https://doi.org/10.1039/b815310hCrossRefGoogle Scholar
  87. 87.
    Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13:2489–2499.  https://doi.org/10.1039/c1gc15374a
  88. 88.
    Brandt-Talbot A, Murphy RJ, Leak DJ, Welton T, Hallett J (2017) Treatment of biomass to dissolve lignin with ionic liquid. US patent no 9,765,478Google Scholar
  89. 89.
    Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 2399–2407.  https://doi.org/10.1039/B107270F
  90. 90.
    Supap T, Idem R, Tontiwachwuthikul P (2011) Mechanism of formation of heat stable salts (HSSs) and their roles in further degradation of monoethanolamine during CO2 capture from flue gas streams. Energy Procedia 4:591–598.  https://doi.org/10.1016/j.egypro.2011.01.093CrossRefGoogle Scholar
  91. 91.
    Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravidranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod Biorefining 6:246–256.  https://doi.org/10.1002/bbb.1324
  92. 92.
    Fox DM, Awad WH, Gilman JW, Maupin PH, De Long HC, Trulove PC (2003) Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem 5:724–727.  https://doi.org/10.1039/B308444BCrossRefGoogle Scholar
  93. 93.
    Cao Y, Mu T (2014) Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res 53:8651–8664.  https://doi.org/10.1021/ie5009597CrossRefGoogle Scholar
  94. 94.
    Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35.  https://doi.org/10.1016/j.biombioe.2012.04.020CrossRefGoogle Scholar
  95. 95.
    Subramaniam B, Helling RK, Bode CJ (2016) Quantitative sustainability analysis: a powerful tool to develop resource-efficient catalytic technologies. ACS Sustain Chem Eng 4:5859–5865.  https://doi.org/10.1021/acssuschemeng.6b01571CrossRefGoogle Scholar
  96. 96.
    Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119.  https://doi.org/10.1039/C3GC42306ACrossRefGoogle Scholar
  97. 97.
    Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977.  https://doi.org/10.1039/c3cs60071hCrossRefPubMedGoogle Scholar
  98. 98.
    Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576.  https://doi.org/10.1021/cr1003248
  99. 99.
    Sanders JPM, Clark JH, Harmsen GJ, Heeres HJ, Heijnen JJ, Kersten SR, van Swaaij WPM, Moulijn JA (2012) Process intensification in the future production of base chemicals from biomass. Chem Eng Process Process Intensif 51:117–136.  https://doi.org/10.1016/j.cep.2011.08.007CrossRefGoogle Scholar
  100. 100.
    Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefining 5:562–569.  https://doi.org/10.1002/bbb.303
  101. 101.
    Murthy Konda NVSN, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86.  https://doi.org/10.1186/1754-6834-7-86CrossRefGoogle Scholar
  102. 102.
    Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton S, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol, NREL/TP-5100-4776 Technical ReportGoogle Scholar
  103. 103.
    Ebel K, Koehler H, Gamer AO, Jäckh R (2011) Imidazole and derivatives. Ullmann’s encyclopedia of industrial chemistry, vol 1. Wiley-VCH, New York, pp 131–139Google Scholar
  104. 104.
    Jessop PG (2011) Searching for green solvents. Green Chem 13:1391–1398.  https://doi.org/10.1039/c0gc00797hCrossRefGoogle Scholar
  105. 105.
    Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800.  https://doi.org/10.1021/acs.chemrev.7b00571CrossRefPubMedGoogle Scholar
  106. 106.
    Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra R, Shi J, Ebrik MA, Redmont T, Yang B, Wyman CE, Hames B, Thomas S, Warner RE (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102:11105–11114.  https://doi.org/10.1016/j.biortech.2011.07.051CrossRefPubMedGoogle Scholar
  107. 107.
    Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89:S20–S28.  https://doi.org/10.1016/j.fuel.2010.01.001CrossRefGoogle Scholar
  108. 108.
    Gschwend FJV, Malaret F, Shinde S, Brandt-Talbot A, Hallett JP (2016) Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chem 20:3486–3498.  https://doi.org/10.1039/C8GC00837J
  109. 109.
    Shinde SD, Meng X, Kumar R, Ragauskas AJ (2018) Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem 20:2192–2205.  https://doi.org/10.1039/C8GC00353JCrossRefGoogle Scholar
  110. 110.
    Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047.  https://doi.org/10.1039/c1gc15522aCrossRefGoogle Scholar
  111. 111.
    Arora R, Manisseri C, Li C, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S (2010) Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenergy Res 3:134–145.  https://doi.org/10.1007/s12155-010-9087-1
  112. 112.
    Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings—a review. Biomass Bioenerg 56:526–544.  https://doi.org/10.1016/j.biombioe.2013.05.031CrossRefGoogle Scholar
  113. 113.
    Samaniuk JR, Scott CT, Root TW, Klingenberg DJ (2012) Rheological modification of corn stover biomass at high solids concentrations. J Rheol 56:649–665.  https://doi.org/10.1122/1.3702101CrossRefGoogle Scholar
  114. 114.
    Papa G, Feldman T, Sale KL, Adani F, Singh S, Simmons BA (2017) Parametric study for the optimization of ionic liquid pretreatment of corn stover. Bioresour Technol 241:627–637.  https://doi.org/10.1016/j.biortech.2017.05.167CrossRefPubMedGoogle Scholar
  115. 115.
    Cruz AG, Scullin C, Mu C, Cheng G, Stavila V, Varanasi P, Xu D, Mentel J, Chuang Y-D, Simmons BA, Singh S (2013) Impact of high biomass loading on ionic liquid pretreatment. Biotechnol Biofuels 6:52.  https://doi.org/10.1186/1754-6834-6-52CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108:2865–2875.  https://doi.org/10.1002/bit.23266CrossRefPubMedGoogle Scholar
  117. 117.
    Auxenfans T, Buchoux S, Larcher D, Husson G, Husson E, Sarazin C (2014) Enzymatic saccharification and structural properties of industrial wood sawdust: Recycled ionic liquids pretreatments. Energy Convers Manag 88:1094–1103.  https://doi.org/10.1016/j.enconman.2014.04.027CrossRefGoogle Scholar
  118. 118.
    Qiu Z, Aita GM (2013) Pretreatment of energy cane bagasse with recycled ionic liquid for enzymatic hydrolysis. Bioresour Technol 129:532–537.  https://doi.org/10.1016/j.biortech.2012.11.062CrossRefPubMedGoogle Scholar
  119. 119.
    da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208.  https://doi.org/10.1016/j.biortech.2013.05.032
  120. 120.
    Badgujar KC, Bhanage BM (2015) Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges. Bioresour Technol 178:2–18.  https://doi.org/10.1016/j.biortech.2014.09.138CrossRefPubMedGoogle Scholar
  121. 121.
    Sun J, Shi J, Murthy Konda NVSN, Campos D, Liu D, Nemser S, Shamshina J, Dutta T, Berton P, Gurau G, Rogers RD, Simmons BA, Singh S (2017) Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnol Biofuels 1:154.  https://doi.org/10.1186/s13068-017-0842-9CrossRefGoogle Scholar
  122. 122.
    Mai NL, Ahn K, Koo Y-M (2014) Methods for recovery of ionic liquids—a review. Process Biochem 49:872–881.  https://doi.org/10.1016/j.procbio.2014.01.016CrossRefGoogle Scholar
  123. 123.
    Reid JESJ, Walker AJ, Shimizu S (2015) Residual water in ionic liquids: clustered or dissociated? Phys Chem Chem Phys 17:14710–14718.  https://doi.org/10.1039/C5CP01854DCrossRefPubMedGoogle Scholar
  124. 124.
    Mateyawa S, Xie DF, Truss RW, Halley PJ, Nicholson TM, Shamshina JL, Rogers RD, Boehm MW, McNally T (2013) Effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on the phase transition of starch: Dissolution or gelatinization? Carbohydr Polym 94:520–530.  https://doi.org/10.1016/j.carbpol.2013.01.024CrossRefPubMedGoogle Scholar
  125. 125.
    Hoerning A, Ribeiro FRG, Cardozo Filho L, Lião LM, Corazza M, Voll FAP (2016) Boiling point elevation of aqueous solutions of ionic liquids derived from diethanolamine base and carboxylic acids. J Chem Thermodyn 98:1–8.  https://doi.org/10.1016/j.jct.2016.02.017CrossRefGoogle Scholar
  126. 126.
    Haerens K, Van Deuren S, Matthijs E, Van der Bruggen B (2010) Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem 12:2182–2188.  https://doi.org/10.1039/c0gc00406eCrossRefGoogle Scholar
  127. 127.
    Lynam JG, Chow GI, Coronella CJ, Hiibel SR (2016) Ionic liquid and water separation by membrane distillation. Chem Eng J 288:557–561.  https://doi.org/10.1016/j.cej.2015.12.028CrossRefGoogle Scholar
  128. 128.
    Li Y, Zhang S, Ding Q, Feng D, Qin B, Hu L (2017) The corrosion and lubrication properties of 2-mercaptobenzothiazole functionalized ionic liquids for bronze. Tribol Int 114:121–131.  https://doi.org/10.1016/j.triboint.2017.04.022CrossRefGoogle Scholar
  129. 129.
    Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5:443–447.  https://doi.org/10.1039/b302570eCrossRefGoogle Scholar
  130. 130.
    Ganske F, Bornscheuer UT (2006) Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids [BMIM][BF4] and [BMIM][PF6] and organic solvents. Biotechnol Lett 28:465–469.  https://doi.org/10.1007/s10529-006-0006-7CrossRefPubMedGoogle Scholar
  131. 131.
    Xu F, Sun J, Murthy Konda NVSN, Shi J, Dutta T, Scown CD, Simmons BA, Singh S (2016) Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ Sci 9:1042–1049.  https://doi.org/10.1039/C5EE02940FCrossRefGoogle Scholar
  132. 132.
    Gladden JM, Allgaier M, Miller CS, Hazen TC, VanderGheynst JS, Hugenholtz P, Simmons BA, Singer SW (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77:5804–5812.  https://doi.org/10.1128/AEM.00032-11CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D’haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:e37010.  https://doi.org/10.1371/journal.pone.0037010
  134. 134.
    Shi J, Gladden JM, Sathitsuksanoh N, Kambam P, Sandoval L, Mitra D, Zhang S, George A, Singer SW, Simmons BA, Singh S (2013) One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem 15:2579–2589.  https://doi.org/10.1039/c3gc40545aCrossRefGoogle Scholar
  135. 135.
    Shi J, Balamurugan K, Parthasarathi R, Sathitsuksanoh N, Zhang S, Stavila V, Subramanian V, Simmons BA, Singh S (2014) Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent? Green Chem 16:3830–3840.  https://doi.org/10.1039/C4GC00373JCrossRefGoogle Scholar
  136. 136.
    Dilasari B, Jung Y, Sohn J, Kim S, Kwon K (2016) Review on corrosion behavior of metallic materials in room temperature ionic liquids. Int J Electrochem Sci 11:1482–1495.  https://doi.org/10.1021/acssuschemeng.5b00974CrossRefGoogle Scholar
  137. 137.
    Ma Y, Han F, Li Z, Xia C (2016) Corrosion behavior of metallic materials in acidic-functionalized ionic liquids. ACS Sustain Chem Eng 4:633–639.  https://doi.org/10.1021/acssuschemeng.5b00974CrossRefGoogle Scholar
  138. 138.
    Guo Y, Xu B, Liu Y, Yang W, Yin X, Chen Y, Le J, Chen Z (2017) Corrosion inhibition properties of two imidazolium ionic liquids with hydrophilic tetrafluoroborate and hydrophobic hexafluorophosphate anions in acid medium. J Ind Eng Chem 56:234–247.  https://doi.org/10.1016/j.jiec.2017.07.016CrossRefGoogle Scholar
  139. 139.
    Verma C, Ebenso EE, Quraishi MA (2017) Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview. J Mol Liq 233:403–414.  https://doi.org/10.1016/j.molliq.2017.02.111CrossRefGoogle Scholar
  140. 140.
    Zhang QB, Hua YX (2009) Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochim Acta 54:1881–1887.  https://doi.org/10.1016/j.electacta.2008.10.025CrossRefGoogle Scholar
  141. 141.
    Kannan P, Karthikeyan J, Murugan P, Rao TS, Rajendran N (2016) Corrosion inhibition effect of novel methyl benzimidazolium ionic liquid for carbon steel in HCl medium. J Mol Liq 221:368–380.  https://doi.org/10.1016/j.molliq.2016.04.130CrossRefGoogle Scholar
  142. 142.
    Uerdingen M, Treber C, Balser M, Schmitt G, Werner C (2005) Corrosion behaviour of ionic liquids. Green Chem 7:321–325.  https://doi.org/10.1039/b419320mCrossRefGoogle Scholar
  143. 143.
    Schweitzer PA (2004) Corrosion resistance tables: metals, nonmetals, coatings, mortars, plastics, elastomers and linings, and fabrics. CRC Press, Boca RatonGoogle Scholar
  144. 144.
    Li C, Liang L, Sun N, Thompson VS, Xu F, Narani A, He Q, Tanjore D, Pray TR, Simmons BA, Singh S (2017) Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids. Biotechnol Biofuels 10:13.  https://doi.org/10.1186/s13068-016-0694-8CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Shekiro J III, Kuhn EM, Nagle NJ, Tucker MP, Elander RT, Schell DJ (2014) Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover. Biotechnol Biofuels 7:23.  https://doi.org/10.1186/1754-6834-7-23CrossRefGoogle Scholar
  146. 146.
    Kermani NA, Petrushina I, Nikiforov A, Jensen JO, Rokni M (2016) Corrosion behavior of construction materials for ionic liquid hydrogen compressor. Int J Hydrogen Energy 41:16688–16695.  https://doi.org/10.1016/j.ijhydene.2016.06.221CrossRefGoogle Scholar
  147. 147.
    Dilasari B, Jung Y, Kwon K (2016) Comparative study of corrosion behavior of metals in protic and aprotic ionic liquids. Electrochem Commun 73:20–23.  https://doi.org/10.1016/j.elecom.2016.10.009CrossRefGoogle Scholar
  148. 148.
    Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, Himmel ME, Laser MS, Wang M, Wyman CE (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211.  https://doi.org/10.1016/j.copbio.2017.03.008CrossRefPubMedGoogle Scholar
  149. 149.
    Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637.  https://doi.org/10.1039/b817717cCrossRefPubMedGoogle Scholar
  150. 150.
    Righi S, Morfino A, Galletti P, Samorì C, Tugnoli A, Stramigioli C (2011) Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide. Green Chem 13:367–375.  https://doi.org/10.1039/C0GC00647ECrossRefGoogle Scholar
  151. 151.
    Zhang Y, Bakshi BR, Demessie ES (2008) Life cycle assessment of an ionic liquid versus molecular solvents and their applications. Environ Sci Technol 42:1724–1730.  https://doi.org/10.1021/es0713983CrossRefPubMedGoogle Scholar
  152. 152.
    Tao L, Tan ECD, Aden A, Elander RT (2014) Techno-economic analysis and life-cycle assessment of lignocellulosic biomass to sugars using various pretreatment technologies. In: Sun J, Ding S-Y, Doran-Peterson J (eds.) Biological conversion of biomass for fuels and chemicals: Exploration from natural utilization systems. RSC Energy and Environment Series 10, The Royal Society of Chemistry, pp. 358–380.  https://doi.org/10.1039/9781849734738-00358

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aida R. Abouelela
    • 1
  • Florence V. Gschwend
    • 1
  • Francisco Malaret
    • 1
  • Jason P. Hallett
    • 1
    Email author
  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations