Advertisement

Development of New Cellulosic Fibers and Composites Using Ionic Liquid Technology

  • Frank HermanutzEmail author
  • Marc Philip Vocht
  • Michael R. Buchmeiser
Chapter
  • 66 Downloads
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

One of the most important applications of ionic liquids (ILs) is their use as a solvent for natural polymers. In particular, solutions of cellulose, chitosan, and chitin in ILs are used for the production of fibers, coatings, composites, and new materials. The initiation of this new field of research was triggered by the publication of Swatloski et al., which reported in 2002 for the first time the solubility of cellulose in ILs. Numerous papers have been devoted to the search for new solvents for cellulose and for scientific and industrial applications. Depending on the application of the IL, it is necessary to compromise between the ecological (toxicity) and the economic parameters (cost of the IL). This chapter discusses the scope of this approach and the limits in the practical application of ILs for the dissolution of cellulose, a natural polymer. The rational choice of ILs for use in particular processes, the features of dissolution methods for natural polymers (including cellulose, chitin, and fibroin), and the preparation of blends from the solutions of polymers with ILs are discussed.

Keywords

Biopolymers Cellulosic blend fibers All-cellulose composites Recycling Super-microfibers 

References

  1. 1.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Chem Soc Rev 40:3941–3994.  https://doi.org/10.1039/c0cs00108bCrossRefGoogle Scholar
  2. 2.
    Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C (2008) Green Chem 10:965–971.  https://doi.org/10.1039/B803869DCrossRefGoogle Scholar
  3. 3.
    Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Cellulose 19:581–587.  https://doi.org/10.1007/s10570-011-9644-6CrossRefGoogle Scholar
  4. 4.
    Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Prog Polym Sci 26:1473–1524.  https://doi.org/10.1016/S0079-6700(01)00025-9CrossRefGoogle Scholar
  5. 5.
    McCormick CL, Dawsey TR (1990) Macromolecules 23:3606–3610.  https://doi.org/10.1021/ma00217a011CrossRefGoogle Scholar
  6. 6.
    Ciacco GT, Liebert TF, Frollini E, Heinze TJ (2003) Cellulose 10:125–132.  https://doi.org/10.1023/a:1024064018664CrossRefGoogle Scholar
  7. 7.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 124:4974–4975.  https://doi.org/10.1021/ja025790mCrossRefPubMedGoogle Scholar
  8. 8.
    Invs.: Swatloski RP, Rogers RD, Holbrey JD (2003) WO03029329Google Scholar
  9. 9.
    Bredereck K, Hermanutz F (2005) Rev Prog Color Relat Top 35:59–75.  https://doi.org/10.1111/j.1478-4408.2005.tb00160.xCrossRefGoogle Scholar
  10. 10.
    Ingildeev D, Effenberger F, Bredereck K, Hermanutz F (2013) J Appl Polym Sci 128:4141–4150.  https://doi.org/10.1002/app.38470CrossRefGoogle Scholar
  11. 11.
    Pang F-J, He C-J, Wang Q-R (2003) J Appl Polym Sci 90:3430–3436.  https://doi.org/10.1002/app.13063CrossRefGoogle Scholar
  12. 12.
    Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Green Chem 8:325–327.  https://doi.org/10.1039/b601395cCrossRefGoogle Scholar
  13. 13.
    Liu C, Sun R, Zhang A, Li W (2010) ACS Symp Ser 1033:287–297.  https://doi.org/10.1021/bk-2010-1033.ch016
  14. 14.
    Kargl R, Mohan T, Ribitsch V, Saake B, Puls J, Stana Kleinschek K (2015) Nord Pulp Pap Res J 30:6–13.  https://doi.org/10.3183/NPPRJ-2015-30-01-p006-013CrossRefGoogle Scholar
  15. 15.
    Isik M, Sardon H, Mecerreyes D (2014) Int J Molec Sci 15:11922–11940.  https://doi.org/10.3390/ijms150711922CrossRefGoogle Scholar
  16. 16.
    Hermanutz F, Vocht MP, Panzier N, Buchmeiser MR (2018) Macromol Mater Eng 304:1800450.  https://doi.org/10.1002/mame.201800450
  17. 17.
    Walden P (1914) Bull Imp Acad Sci St Pétersbourg 8:405–422Google Scholar
  18. 18.
    Brennecke JF, Maginn EJ (2001) AIChE J 47:2384–2389.  https://doi.org/10.1002/aic.690471102CrossRefGoogle Scholar
  19. 19.
    Endres F, Zein El Abedin S (2006) Phys Chem Chem Phys 8:2101–2116.  https://doi.org/10.1039/B600519PCrossRefPubMedGoogle Scholar
  20. 20.
    Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Chem Rev 109:6712–6728.  https://doi.org/10.1021/cr9001947CrossRefPubMedGoogle Scholar
  21. 21.
    Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Chem Eng J 147:13–21.  https://doi.org/10.1016/j.cej.2008.11.011CrossRefGoogle Scholar
  22. 22.
    Tokuda H, Tsuzuki S, Abu Bin Hasan Susan M, Hayamizu K, Watanabe M (2006) J Phys Chem B 110:19593–19600.  https://doi.org/10.1021/jp064159vCrossRefPubMedGoogle Scholar
  23. 23.
    Dupont J (2004) J Braz Chem Soc 15:341–350.  https://doi.org/10.1590/S0103-50532004000300002CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermochim Acta 357:97–102.  https://doi.org/10.1016/S0040-6031(00)00373-7CrossRefGoogle Scholar
  26. 26.
    Sashina ES, Kashirskii DA, Janowska G, Zaborski M (2013) Thermochim Acta 568:185–188.  https://doi.org/10.1016/j.tca.2013.06.022CrossRefGoogle Scholar
  27. 27.
    Wendler F, Todi L-N, Meister F (2012) Thermochim Acta 528:76–84.  https://doi.org/10.1016/j.tca.2011.11.015CrossRefGoogle Scholar
  28. 28.
    Freire MG, Santos LMNBF, Fernandes AM, Coutinho JAP, Marrucho IM (2007) Fluid Phase Equilib 261:449–454.  https://doi.org/10.1016/j.fluid.2007.07.033CrossRefGoogle Scholar
  29. 29.
    Seddon K, Stark A, Torres M-J (2000) Pure Appl Chem 72:2275–2287.  https://doi.org/10.1351/pac200072122275CrossRefGoogle Scholar
  30. 30.
    Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156–164.  https://doi.org/10.1039/B103275PCrossRefGoogle Scholar
  31. 31.
    Dupont J, de Souza RF, Suarez PAZ (2002) Chem Rev 102:3667–3692.  https://doi.org/10.1021/cr010338rCrossRefPubMedGoogle Scholar
  32. 32.
    Hayes R, Warr GG, Atkin R (2015) Chem Rev 115:6357–6426.  https://doi.org/10.1021/cr500411qCrossRefPubMedGoogle Scholar
  33. 33.
    Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123–150.  https://doi.org/10.1039/b006677jCrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
  35. 35.
    Dorn S (2009) Ionische Flüssigkeiten: neuartige Löse- und Reaktionsmedien in der Cellulosechemie. Doctoral thesis. Friedrich-Schiller-Universität Jena, GermanyGoogle Scholar
  36. 36.
    Cvjetko Bubalo M, Radošević K, Radojčić Redovniković I, Halambek J, Gaurina Srček V (2014) Ecotoxicol Environ Saf 99:1–12.  https://doi.org/10.1016/j.ecoenv.2013.10.019CrossRefGoogle Scholar
  37. 37.
    Zhao D, Liao Y, Zhang Z (2007) Clean 35:42–48.  https://doi.org/10.1002/clen.200600015CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Pham T, Cho C-W, Yun Y-S (2010) Water Res 44:352–372.  https://doi.org/10.1016/j.watres.2009.09.030CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang H, Gurau G, Rogers RD (2012) Chem Soc Rev 41:1519–1537.  https://doi.org/10.1039/c2cs15311dCrossRefPubMedGoogle Scholar
  41. 41.
    Witos J, Russo G, Ruokonen S-K, Wiedmer SK (2017) Langmuir 33:1066–1076.  https://doi.org/10.1021/acs.langmuir.6b04359CrossRefPubMedGoogle Scholar
  42. 42.
    Ruokonen S-K, Sanwald C, Sundvik M, Polnick S, Vyavaharkar K, Duša F, Holding AJ, King AWT, Kilpeläinen I, Lämmerhofer M, Panula P, Wiedmer SK (2016) Environ Sci Technol 50:7116–7125.  https://doi.org/10.1021/acs.est.5b06107CrossRefPubMedGoogle Scholar
  43. 43.
    Warner JC, Anastas PT (1998) Green chemistry: theory and practice. Oxford University Press, Oxford, p 135Google Scholar
  44. 44.
    Anastas PT, Horváth IT (2007) Chem Rev 107:2167–2168.  https://doi.org/10.1021/cr0783784CrossRefGoogle Scholar
  45. 45.
    Xu A, Wang J, Wang H (2010) Green Chem 12:268–275.  https://doi.org/10.1039/B916882FCrossRefGoogle Scholar
  46. 46.
    Zhang H, Wu J, Zhang J, He J (2005) Macromol 38:8272–8277.  https://doi.org/10.1021/ma0505676CrossRefGoogle Scholar
  47. 47.
    Heinze T, Schwikal K, Barthel S (2005) Macromol Biosci 5:520–525.  https://doi.org/10.1002/mabi.200500039CrossRefPubMedGoogle Scholar
  48. 48.
    Kosan B, Michels C, Meister F (2008) Cellulose 15:59–66.  https://doi.org/10.1007/s10570-007-9160-xCrossRefGoogle Scholar
  49. 49.
    Fukaya Y, Sugimoto A, Ohno H (2006) Biomacromol 7:3295–3297.  https://doi.org/10.1021/bm060327dCrossRefGoogle Scholar
  50. 50.
    Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Green Chem 11:417–424.  https://doi.org/10.1039/B818061JCrossRefGoogle Scholar
  51. 51.
    El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Biomacromol 8:2629–2647.  https://doi.org/10.1021/bm070062iCrossRefGoogle Scholar
  52. 52.
    Barthel S, Heinze T (2006) Green Chem 8:301–306.  https://doi.org/10.1039/B513157JCrossRefGoogle Scholar
  53. 53.
    Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) Bioresour Technol 100:2580–2587.  https://doi.org/10.1016/j.biortech.2008.11.052CrossRefPubMedGoogle Scholar
  54. 54.
    Erdmenger T, Haensch C, Hoogenboom R, Schubert US (2007) Macromol Biosci 7:440–445.  https://doi.org/10.1002/mabi.200600253CrossRefPubMedGoogle Scholar
  55. 55.
    Mikkola J-P, Kirilin A, Tuuf J-C, Pranovich A, Holmbom B, Kustov LM, Murzin DYu, Salmi T (2007) Green Chem 9:1229–1237.  https://doi.org/10.1039/B708533HCrossRefGoogle Scholar
  56. 56.
    Ab Rahim AH, Yunus NM, Man Z, Sarwono A, Hamzah WSW, Wilfred CD (2018) AIP Conf Proc 2016:020010.  https://doi.org/10.1063/1.5055412CrossRefGoogle Scholar
  57. 57.
    Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Green Chem 10:44–46.  https://doi.org/10.1039/b713289aCrossRefGoogle Scholar
  58. 58.
    Sashina ES, Novoselov NP (2009) Russ J Gen Chem 79:1057.  https://doi.org/10.1134/S1070363209060024CrossRefGoogle Scholar
  59. 59.
    Cai T, Yang G, Zhang H, Shao H, Hu X (2012) Polym Eng Sci 52:1708–1714.  https://doi.org/10.1002/pen.23069CrossRefGoogle Scholar
  60. 60.
    Sashina E, Kashirskii D, Busygin KN (2016) Cellul Chem Technol 50:199–211Google Scholar
  61. 61.
    Sashina ES, Kashirskii DA, Zaborski M, Jankowski S (2012) Russ J Gen Chem 82:1994–1998.  https://doi.org/10.1134/S1070363212120158CrossRefGoogle Scholar
  62. 62.
    Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Green Chem 10:696–705.  https://doi.org/10.1039/B801489BCrossRefGoogle Scholar
  63. 63.
    Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B (2008) Macromol Symp 262:23–27.  https://doi.org/10.1002/masy.200850203CrossRefGoogle Scholar
  64. 64.
    BASF SE, Invs.: Abels F, Cwik T, Beyer R, Hermanutz F (2017) WO2017/137284A1Google Scholar
  65. 65.
    Parviainen A, Wahlström R, Liimatainen U, Liitiä T, Rovio S, Helminen JKJ, Hyväkkö U, King AWT, Suurnäkki A, Kilpeläinen I (2015) RSC Adv 5:69728–69737.  https://doi.org/10.1039/C5RA12386KCrossRefGoogle Scholar
  66. 66.
    Michud A, Tanttu M, Asaadi S, Ma Y, Netti E, Kääriainen P, Persson A, Berntsson A, Hummel M, Sixta H (2015) Text Res J 86:543–552.  https://doi.org/10.1177/0040517515591774CrossRefGoogle Scholar
  67. 67.
    Kostag M, Jedvert K, Achtel C, Heinze T, El Seoud OA (2018) Molecules 23:511–549.  https://doi.org/10.3390/molecules23030511CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Feng L, Chen Z (2008) J Mol Liq 142:1–5.  https://doi.org/10.1016/j.molliq.2008.06.007CrossRefGoogle Scholar
  69. 69.
    Sashina ES (2018) Fibre Chem 50:139–143.  https://doi.org/10.1007/s10692-018-9949-4CrossRefGoogle Scholar
  70. 70.
    Lu B, Xu A, Wang J (2014) Green Chem 16:1326–1335.  https://doi.org/10.1039/c3gc41733fCrossRefGoogle Scholar
  71. 71.
    Zhang J, Xu L, Yu J, Wu J, Zhang X, He J, Zhang J (2016) Sci China Chem 59:1421–1429.  https://doi.org/10.1007/s11426-016-0269-5CrossRefGoogle Scholar
  72. 72.
    Zhu C, Koutsomitopoulou AF, Eichhorn SJ, van Duijneveldt JS, Richardson RM, Nigmatullin R, Potter KD (2018) Macromol Mater Eng 303:1800029.  https://doi.org/10.1002/mame.201800029CrossRefGoogle Scholar
  73. 73.
    Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) J Agric Food Chem 55:9142–9148.  https://doi.org/10.1021/jf071692eCrossRefPubMedGoogle Scholar
  74. 74.
    Spörl JM, Hermanutz F, Buchmeiser MR (2017) Nachr Chem 65:998–1003.  https://doi.org/10.1002/nadc.20174058531CrossRefGoogle Scholar
  75. 75.
    Dorn S, Wendler F, Meister F, Heinze T (2008) Macromol Mater Eng 293:907–913.  https://doi.org/10.1002/mame.200800153CrossRefGoogle Scholar
  76. 76.
    Chanzy H, Nawrot S, Peguy A, Smith P, Chevalier J (1982) J Polym Sci B Polym Phys 20:1909–1924.  https://doi.org/10.1002/pol.1982.180201014CrossRefGoogle Scholar
  77. 77.
    Spörl JM, Batti F, Vocht M-P, Raab R, Müller A, Hermanutz F, Buchmeiser MR (2017) Macromol Mater Eng 303:1700335.  https://doi.org/10.1002/mame.201700335CrossRefGoogle Scholar
  78. 78.
    Olsson C, Westman G (2013) J Appl Polym Sci 127:4542–4548.  https://doi.org/10.1002/app.38064CrossRefGoogle Scholar
  79. 79.
    Moosbauer J, Röder T, Kliba G, Schlader S, Zuckerstätter G, Sixta H (2009) Lenzinger Ber 87:98–105Google Scholar
  80. 80.
    Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, Sixta H (2005) Lenzinger Ber 84:71–86Google Scholar
  81. 81.
    Spörl JM, Beyer R, Abels F, Cwik T, Müller A, Hermanutz F, Buchmeiser MR (2017) Macromol Mater Eng 302:1700195.  https://doi.org/10.1002/mame.201700195CrossRefGoogle Scholar
  82. 82.
    Spörl JM, Ota A, Son S, Massonne K, Hermanutz F, Buchmeiser MR (2016) Mater Today Commun 7:1–10.  https://doi.org/10.1016/j.mtcomm.2016.02.002CrossRefGoogle Scholar
  83. 83.
    Luo Z, Wang A, Wang C, Qin W, Zhao N, Song H, Gao J (2014) J Mater Chem A 2:7327–7336.  https://doi.org/10.1039/c4ta00225cCrossRefGoogle Scholar
  84. 84.
    Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Gilman JW, Kumar S (2009) Polymer 50:4577–4583.  https://doi.org/10.1016/j.polymer.2009.07.015CrossRefGoogle Scholar
  85. 85.
    Olsson C, Hedlund A, Idström A, Westman G (2014) J Mater Sci 49:3423–3433.  https://doi.org/10.1007/s10853-014-8052-3CrossRefGoogle Scholar
  86. 86.
    Zhu C, Richardson RM, Potter KD, Koutsomitopoulou AF, van Duijneveldt JS, Vincent SR, Wanasekara ND, Eichhorn SJ, Rahatekar SS (2016) ACS Sustain Chem Eng 4:4545–4553.  https://doi.org/10.1021/acssuschemeng.6b00555CrossRefGoogle Scholar
  87. 87.
    Hermanutz F, Ingildeev D, Buchmeiser MR (2013) Chem Fibers Int 63:84–87Google Scholar
  88. 88.
    Parviainen A, King AW, Mutikainen I, Hummel M, Selg C, Hauru LK, Sixta H, Kilpelainen I (2013) ChemSusChem 6:2161–2169.  https://doi.org/10.1002/cssc.201300143CrossRefPubMedGoogle Scholar
  89. 89.
    Hauru LKJ, Hummel M, Michud A, Sixta H (2014) Cellulose 21:4471–4481.  https://doi.org/10.1007/s10570-014-0414-0CrossRefGoogle Scholar
  90. 90.
    Michud A, Hummel M, Sixta H (2015) Polymer 75:1–9.  https://doi.org/10.1016/j.polymer.2015.08.017CrossRefGoogle Scholar
  91. 91.
    Wanasekara ND, Michud A, Zhu C, Rahatekar S, Sixta H, Eichhorn SJ (2016) Polymer 99:222–230.  https://doi.org/10.1016/j.polymer.2016.07.007CrossRefGoogle Scholar
  92. 92.
    Michud A, Hummel M, Sixta H (2016) J Appl Polym Sci 133:43718.  https://doi.org/10.1002/app.43718
  93. 93.
    Ma Y, Hummel M, Määttänen M, Särkilahti A, Harlin A, Sixta H (2016) Green Chem 18:858–866.  https://doi.org/10.1039/c5gc01679gCrossRefGoogle Scholar
  94. 94.
    Spörl JM (2016) Neue Präkursoren für Carbonfasern auf Basis von Cellulose. Doctoral thesis. University of Stuttgart, Cuvillier Verlag, GöttingenGoogle Scholar
  95. 95.
    Zhang Y, Li H, Li X, Gibril ME, Yu M (2014) Carbohydr Polym 99:126–131.  https://doi.org/10.1016/j.carbpol.2013.07.084CrossRefPubMedGoogle Scholar
  96. 96.
    Vo HT, Kim YJ, Jeon EH, Kim CS, Kim HS, Lee H (2012) Chem Eur J 18:9019–9023.  https://doi.org/10.1002/chem.201200982CrossRefPubMedGoogle Scholar
  97. 97.
    Ingildeev D, Hermanutz F, Buchmeiser MR, Onuseit V, Feuer A, Weber R (2013) Stuttgarter Kunststoff-Kolloquium 23:157–161Google Scholar
  98. 98.
    Ingildeev D, Hermanutz F, Bredereck K, Effenberger F (2012) Macromol Mater Eng 297:585–594.  https://doi.org/10.1002/mame.201100432CrossRefGoogle Scholar
  99. 99.
    Byrne N, Leblais A, Fox B (2014) J Mater Chem A 2:3424–3429.  https://doi.org/10.1039/C3TA15227HCrossRefGoogle Scholar
  100. 100.
    Mundsinger K, Müller A, Beyer R, Hermanutz F, Buchmeiser MR (2015) Carbohydr Polym 131:34–40.  https://doi.org/10.1016/j.carbpol.2015.05.065CrossRefPubMedGoogle Scholar
  101. 101.
    Ingildeev D (2010) Herstellung und Charakterisierung von Fasern aus Cellulose und Cellulose/Polymer-Blends mittels ionischer Flüssigkeiten. Doctoral thesis. University of Stuttgart, Shaker Verlag, Düren (2011)Google Scholar
  102. 102.
    Wu K, Yao Y, Yu J, Chen S, Wang X, Zhang Y, Wang H (2017) Cellulose 24:3377–3386.  https://doi.org/10.1007/s10570-017-1351-5CrossRefGoogle Scholar
  103. 103.
    Bengtsson A, Bengtsson J, Olsson C, Sedin M, Jedvert K, Theliander H, Sjöholm E (2018) Holzforschung 72:1007–1016.  https://doi.org/10.1515/hf-2018-0028CrossRefGoogle Scholar
  104. 104.
    Pillai CKS, Paul W, Sharma CP (2009) Progr Polym Sci 34:641–678.  https://doi.org/10.1016/j.progpolymsci.2009.04.001CrossRefGoogle Scholar
  105. 105.
    Rinaudo M (2006) Progr Polym Sci 31:603–632.  https://doi.org/10.1016/j.progpolymsci.2006.06.001CrossRefGoogle Scholar
  106. 106.
    Silva SS, Mano JF, Reis RL (2017) Green Chem 19:1208–1220.  https://doi.org/10.1039/C6GC02827FCrossRefGoogle Scholar
  107. 107.
    Walther P, Ota A, Müller A, Hermanutz F, Gähr F, Buchmeiser MR (2016) Macromol Mater Eng 301:1337–1344.  https://doi.org/10.1002/mame.201600208
  108. 108.
    Qin Y, Lu X, Sun N, Rogers RD (2010) Green Chem 12:968–971.  https://doi.org/10.1039/c003583aCrossRefGoogle Scholar
  109. 109.
    Barber PS, Kelley SP, Griggs CS, Wallace S, Rogers RD (2014) Green Chem 16:1828–1836.  https://doi.org/10.1039/C4GC00092GCrossRefGoogle Scholar
  110. 110.
    Shamshina JL, Zavgorodnya O, Bonner JR, Gurau G, Di Nardo T, Rogers RD (2017) ChemSusChem 10:106–111.  https://doi.org/10.1002/cssc.201601372CrossRefPubMedGoogle Scholar
  111. 111.
    Huang Y, Zhong Z, Duan B, Zhang L, Yang Z, Wang Y, Ye Q (2014) J Mater Chem B 2:3427–3432.  https://doi.org/10.1039/C4TB00098FCrossRefGoogle Scholar
  112. 112.
    Nowotny J, Aibibu D, Farack J, Nimtschke U, Hild M, Gelinsky M, Kasten P, Cherif C (2016) J Biomater Sci Polym Ed 27:917–936.  https://doi.org/10.1080/09205063.2016.1155879CrossRefPubMedGoogle Scholar
  113. 113.
    Toskas G, Brünler R, Hund H, Hund R-D, Hild M, Aibibu D, Cherif C (2013) Autex Res J 13:134–140.  https://doi.org/10.2478/v10304-012-0041-5CrossRefGoogle Scholar
  114. 114.
    Chen Q, Xu A, Li Z, Wang J, Zhang S (2011) Green Chem 13:3446–3452.  https://doi.org/10.1039/C1GC15703ECrossRefGoogle Scholar
  115. 115.
    Zhang L, Guo J, Du Y (2002) J Appl Polym Sci 86:2025–2032.  https://doi.org/10.1002/app.11156CrossRefGoogle Scholar
  116. 116.
    Setoyama M, Kato T, Yamamoto K, Kadokawa J (2013) J Polym Environ 21:795–801.  https://doi.org/10.1007/s10924-013-0580-4CrossRefGoogle Scholar
  117. 117.
    Kadokawa J, Hirohama K, Mine S, Kato T, Yamamoto K (2012) J Polym Environ 20:37–42.  https://doi.org/10.1007/s10924-011-0331-3CrossRefGoogle Scholar
  118. 118.
    Dutta PK, Dutta J, Tripathi VS (2004) J Sci Ind Res 63:20–31Google Scholar
  119. 119.
    Holmberg M, Berg J, Stemme S, Ödberg L, Rasmusson J, Claesson P (1997) J Coll Interf Sci 186:369–381.  https://doi.org/10.1006/jcis.1996.4657CrossRefGoogle Scholar
  120. 120.
    Kuzmina O, Heinze T, Wawro D (2012) ISRN Polym Sci 2012:251950.  https://doi.org/10.5402/2012/251950CrossRefGoogle Scholar
  121. 121.
    Ma B, Zhang M, He C, Sun J (2012) Carbohydr Polym 88:347–351.  https://doi.org/10.1016/j.carbpol.2011.12.020CrossRefGoogle Scholar
  122. 122.
    Stefanescu C, Daly WH, Negulescu II (2012) Carbohydr Polym 87:435–443.  https://doi.org/10.1016/j.carbpol.2011.08.003CrossRefGoogle Scholar
  123. 123.
    Ehrenstein GW (2006) Faserverbund-Kunststoffe: Werkstoffe—Verarbeitung—Eigenschaften, 2nd edn. Carl-Hanser Verlag, MünchenCrossRefGoogle Scholar
  124. 124.
    Yazdanbakhsh A, Bank LC (2014) Polymers 6:1810–1826.  https://doi.org/10.3390/polym6061810CrossRefGoogle Scholar
  125. 125.
    The European Parliament and the Council (2008) Off J Eur Union, L312/313Google Scholar
  126. 126.
    Karus M, Ortmann S, Vogt D, Müssig J (2005) Naturfaserverstärkte Kunststoffe—Pflanzen, Rohstoffe, Produkte, 1st edn. Fachagentur Nachwachsende Rohstoffe e. V. (FNR), Gülzow, pp 1–40Google Scholar
  127. 127.
    Bos HL (2004) The potential of flax fibres as reinforcement for composite materials. Doctoral thesis. Technische Universiteit Eindhoven, Eindhoven, The Netherlands.  https://doi.org/10.6100/IR575360
  128. 128.
    Nishino T, Matsuda I, Hirao K (2004) Macromolecules 37:7683–7687.  https://doi.org/10.1021/ma049300hCrossRefGoogle Scholar
  129. 129.
    Kalka S, Huber T, Steinberg J, Baronian K, Müssig J, Staiger MP (2014) Compos A Appl Sci Manuf 59:37–44.  https://doi.org/10.1016/j.compositesa.2013.12.012CrossRefGoogle Scholar
  130. 130.
    Beauson J, Lilholt H, Brøndsted P (2014) J Reinf Plast Compos 33:1542–1556.  https://doi.org/10.1177/0731684414537131CrossRefGoogle Scholar
  131. 131.
    Gindl W, Keckes J (2005) Polymer 46:10221–10225.  https://doi.org/10.1016/j.polymer.2005.08.040CrossRefGoogle Scholar
  132. 132.
    Piltonen P, Hildebrandt NC, Westerlind B, Valkama J-P, Tervahartiala T, Illikainen M (2016) Compos Sci Technol 135:153–158.  https://doi.org/10.1016/j.compscitech.2016.09.022CrossRefGoogle Scholar
  133. 133.
    Duchemin B, Le Corre D, Leray N, Dufresne A, Staiger MP (2016) Cellulose 23:593–609.  https://doi.org/10.1007/s10570-015-0835-4CrossRefGoogle Scholar
  134. 134.
    Qi H, Cai J, Zhang L, Kuga S (2009) Biomacromol 10:1597–1602.  https://doi.org/10.1021/bm9001975CrossRefGoogle Scholar
  135. 135.
    Huber T, Pang S, Staiger MP (2012) Compos Part A Appl Sci Manuf 43:1738–1745.  https://doi.org/10.1016/j.compositesa.2012.04.017CrossRefGoogle Scholar
  136. 136.
    Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) Compos Sci Technol 68:2201–2207.  https://doi.org/10.1016/j.compscitech.2008.03.023CrossRefGoogle Scholar
  137. 137.
    Li J, Nawaz H, Wu J, Zhang J, Wan J, Mi Q, Yu J, Zhang J (2018) Compos Commun 9:42–53.  https://doi.org/10.1016/j.coco.2018.04.008CrossRefGoogle Scholar
  138. 138.
    Adak B, Mukhopadhyay S (2016) J Appl Polym Sci 133:43398.  https://doi.org/10.1002/app.43398CrossRefGoogle Scholar
  139. 139.
    Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2011) J Mater Sci 47:1171–1186.  https://doi.org/10.1007/s10853-011-5774-3CrossRefGoogle Scholar
  140. 140.
    Zhao H, Xia S, Ma P (2005) J Chem Technol Biotechnol 80:1089–1096.  https://doi.org/10.1002/jctb.1333CrossRefGoogle Scholar
  141. 141.
    Zhao Q, Yam RCM, Zhang B, Yang Y, Cheng X, Li RKY (2009) Cellulose 16:217–226.  https://doi.org/10.1007/s10570-008-9251-3CrossRefGoogle Scholar
  142. 142.
    Duchemin BJC, Newman RH, Staiger MP (2009) Compos Sci Technol 69:1225–1230.  https://doi.org/10.1016/j.compscitech.2009.02.027CrossRefGoogle Scholar
  143. 143.
    Zhang J, Luo N, Zhang X, Xu L, Wu J, Yu J, He J, Zhang J (2016) ACS Sustain Chem Eng 4:4417–4423.  https://doi.org/10.1021/acssuschemeng.6b01034CrossRefGoogle Scholar
  144. 144.
    Yousefi H, Nishino T, Faezipour M, Ebrahimi G, Shakeri A (2011) Biomacromol 12:4080–4085.  https://doi.org/10.1021/bm201147aCrossRefGoogle Scholar
  145. 145.
    Duchemin BJC, Mathew AP, Oksman K (2009) Compos Part A Appl Sci Manuf 40:2031–2037.  https://doi.org/10.1016/j.compositesa.2009.09.013CrossRefGoogle Scholar
  146. 146.
    Huber T, Bickerton S, Müssig J, Pang S, Staiger MP (2012) Carbohydr Polym 90:730–733.  https://doi.org/10.1016/j.carbpol.2012.05.047CrossRefPubMedGoogle Scholar
  147. 147.
    Adak B, Mukhopadhyay S (2018) Polymer 141:79–85.  https://doi.org/10.1016/j.polymer.2018.02.065CrossRefGoogle Scholar
  148. 148.
    Adak B, Mukhopadhyay S (2016) Indian J Fibre Text Res 41:380–384Google Scholar
  149. 149.
    Haverhals LM, Sulpizio HM, Fayos ZA, Trulove MA, Reichert WM, Foley MP, De Long HC, Trulove PC (2012) Cellulose 19:13–22.  https://doi.org/10.1007/s10570-011-9605-0CrossRefGoogle Scholar
  150. 150.
    Haverhals LM, Reichert WM, De Long HC, Trulove PC (2010) Macromol Mater Eng 295:425–430.  https://doi.org/10.1002/mame.201000005CrossRefGoogle Scholar
  151. 151.
    Ouajai S, Shanks RA (2009) Compos Sci Technol 69:2119–2126.  https://doi.org/10.1016/j.compscitech.2009.05.005CrossRefGoogle Scholar
  152. 152.
    Lindman B, Karlström G, Stigsson L (2010) J Mol Liq 156:76–81.  https://doi.org/10.1016/j.molliq.2010.04.016CrossRefGoogle Scholar
  153. 153.
    Dormanns JW, Weiler F, Schuermann J, Müssig J, Duchemin BJC, Staiger MP (2016) Compos Part A Appl Sci Manuf 85:65–75.  https://doi.org/10.1016/j.compositesa.2016.03.010CrossRefGoogle Scholar
  154. 154.
    Fitzer E, Edie DD, Johnson DJ (1990) Carbon fibres—present state and future expectations; Pitch and mesophase fibers; Structure and properties of carbon fibers. In: Figueiredo JL, Bernardo CA, Baker RTK, Hüttinger KJ (eds) Carbon fibers filaments and composites. NATO ASI series E, vol 117. Springer, Dordrecht, pp 3–41, pp 43–72, pp 119–146.  https://doi.org/10.1007/978-94-015-6847-0_1,  https://doi.org/10.1007/978-94-015-6847-0_2,  https://doi.org/10.1007/978-94-015-6847-0_5
  155. 155.
    Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR (2014) Angew Chem Int Ed 53:5262–5298.  https://doi.org/10.1002/anie.201306129CrossRefGoogle Scholar
  156. 156.
    Baker DA, Rials TG (2013) J Appl Polym Sci 130:713–728.  https://doi.org/10.1002/app.39273CrossRefGoogle Scholar
  157. 157.
  158. 158.
    Inv.: Edison TA (1880) US223898AGoogle Scholar
  159. 159.
    Union Carbide Corporation, Invs.: Ford CE, Mitchell CV (1963) US3107152Google Scholar
  160. 160.
    Union Carbide Corporation, Invs.: Ford CE, Mitchell CV (1962) DE1130419Google Scholar
  161. 161.
    Union Carbide Corporation, Invs.: Bacon R, Schalamon WA (1973) US3716331AGoogle Scholar
  162. 162.
    Dumanlı AG, Windle AH (2012) J Mater Sci 47:4236–4250.  https://doi.org/10.1007/s10853-011-6081-8CrossRefGoogle Scholar
  163. 163.
    Zhang X, Lu Y, Xiao H, Peterlik H (2013) J Mater Sci 49:673–684.  https://doi.org/10.1007/s10853-013-7748-0CrossRefGoogle Scholar
  164. 164.
    Byrne N, Setty M, Blight S, Tadros R, Ma Y, Sixta H, Hummel M (2016) Macromol Chem Phys 217:2517–2524.  https://doi.org/10.1002/macp.201600236CrossRefGoogle Scholar
  165. 165.
    Union Carbide Corporation, Invs.: Cross CB, Ecker DR, Stein OL (1964) US3116975Google Scholar
  166. 166.
    Brunner PH, Roberts PV (1980) Carbon 18:217–224.  https://doi.org/10.1016/0008-6223(80)90064-0CrossRefGoogle Scholar
  167. 167.
    Konkin AA (1985) Production of cellulose based carbon fibrous materials. In: Kelly A, Rabotnov YuN, Watt W, Perov BV (eds) Handbook of composites. Vol 1 Strong fibres, Elsevier, Amsterdam, pp 275–325Google Scholar
  168. 168.
    Bacon R (1973) Carbon fibers from rayon precursors. In: Walker Jr PL, Thrower PA (eds) Chemistry and physics of carbon, vol 9, 1st edn. Marcel Dekker, New York, pp 1–102Google Scholar
  169. 169.
  170. 170.
    Karacan I, Soy T (2013) J Mater Sci 48:2009–2021.  https://doi.org/10.1007/s10853-012-6970-5CrossRefGoogle Scholar
  171. 171.
    Schwenker Jr RF, Pacsu E (1958) Ind Eng Chem 50:91–96.  https://doi.org/10.1021/ie50577a043CrossRefGoogle Scholar
  172. 172.
    Goodhew PJ, Clarke AJ, Bailey JE (1975) Mater Sci Eng 17:3–30.  https://doi.org/10.1016/0025-5416(75)90026-9CrossRefGoogle Scholar
  173. 173.
    Tang WK, Neill WK (1964) J Polym Sci C Polym Sympos 6:65–81.  https://doi.org/10.1002/polc.5070060109CrossRefGoogle Scholar
  174. 174.
    Basch A, Lewin M (1975) Text Res J 45:246–250.  https://doi.org/10.1177/004051757504500310CrossRefGoogle Scholar
  175. 175.
    Tomlinson JB, Theocharis CR (1992) Carbon 30:907–911.  https://doi.org/10.1016/0008-6223(92)90014-NCrossRefGoogle Scholar
  176. 176.
    Morozova AA, Brezhneva YuV (1997) Fibre Chem 29:31–35.  https://doi.org/10.1007/BF02430683CrossRefGoogle Scholar
  177. 177.
    Bhat G, Akato K, Hoffman W (2012) Pretreatment and pyrolysis of rayon-based precursor for carbon fibers. In: Proceedings of the Fiber Society Spring Conference, EMPA, St. Gallen, SwitzerlandGoogle Scholar
  178. 178.
    Li H, Yang Y, Wen Y, Liu L (2007) Compos Sci Technol 67:2675–2682.  https://doi.org/10.1016/j.compscitech.2007.03.008CrossRefGoogle Scholar
  179. 179.
    Wu Q, Pan N, Deng K, Pan D (2008) Carbohydr Polym 72:222–228.  https://doi.org/10.1016/j.carbpol.2007.08.005CrossRefGoogle Scholar
  180. 180.
    Liu Q, Lv C, Yang Y, He F, Ling L (2005) J Molec Struct 733:193–202.  https://doi.org/10.1016/j.molstruc.2004.01.016CrossRefGoogle Scholar
  181. 181.
    BASF SE, Invs.: Son S, Massonne K, Hermanutz F, Spörl JM, Buchmeiser MR, Beyer R (2015) WO2015173243Google Scholar
  182. 182.
    Byrne N, Chen J, Fox B (2014) J Mater Chem A 2:15758–15762.  https://doi.org/10.1039/C4TA04059GCrossRefGoogle Scholar
  183. 183.
    Diefendorf RJ, Tokarsky E (1975) Polym Eng Sci 15:150–159.  https://doi.org/10.1002/pen.760150306CrossRefGoogle Scholar
  184. 184.
    Morgan P (2005) Carbon fibers and their composits. CRC Press, Taylor and Francis Group, Boca RatonCrossRefGoogle Scholar
  185. 185.
    Chand S (2000) J Mater Sci 35:1303–1313.  https://doi.org/10.1023/A:1004780301489CrossRefGoogle Scholar
  186. 186.
    Donnet J-B, Bansal RC (1984) Carbon fibers, 1st edn. Marcel Dekker, New YorkGoogle Scholar
  187. 187.
    Spörl JM, Hermanutz F, Buchmeiser MR (2018) Lenzinger Ber 94:85–94Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Frank Hermanutz
    • 1
    Email author
  • Marc Philip Vocht
    • 1
  • Michael R. Buchmeiser
    • 1
    • 2
  1. 1.German Institutes of Textile and Fiber Research (DITF)DenkendorfGermany
  2. 2.Institute of Polymer Chemistry (IPOC), University of StuttgartStuttgartGermany

Personalised recommendations