• David W. HobsonEmail author


The incorporation of nanomaterials into medical devices has benefits and also new challenges for safety assessment. Understanding these challenges is a significant and important step in the process of practicing “safety by design” in the development of nano-enabled medical devices as well as for establishing methods and practices for safety testing. Toxicological issues are being identified and resolved for a growing number of emerging nano-enabled medical devices with product safety as the objective. This safety testing has identified challenges in test design, nomenclature, and global regulatory processes and harmonization. Nevertheless, it is clear that the incorporation of nanotechnology into medical device design most certainly is having and will continue to have major impacts toward advancing both our knowledge of the utility of nanotechnology in medicine and toward improving the quality of life of those with a variety of afflictions that need hope for a brighter future.


Nanotechnology Nanomaterials Nanoparticle Medical device Safety Toxicology Nanodevice Nanomedicine Nanotoxicology 


  1. Ahamed, M., Siddiqui, M. A., Akhtar, M. J., Ahmad, I., Pant, A. B., & Alhadlaq, H. A. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communication, 396(2), 578–583.CrossRefGoogle Scholar
  2. Alexander, G. C., Hwang, P. T., Chen, J., Kim, J., Brott, B. C., Yoon, Y.-S., & Jun, H.-W. (2017). Nanomatrix coated stent enhances endothelialization but reduces platelet, smooth muscle cell, and monocyte adhesion under physiologic conditions. ACS Biomaterials Science & Engineering, 4, 107–115.CrossRefGoogle Scholar
  3. Aninwene, G. E., II, & Webster, T. J. (2013). Nanostructured and nanoparticulate metals: Redefining the field of medical devices. Journal of Powder Metallurgy and Mining, 2, 1–3.Google Scholar
  4. Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407(4), 1461–1468.PubMedCrossRefPubMedCentralGoogle Scholar
  5. ASTM International. (2014). ASTM F1904–14 “Standard Practice for Testing the Biological Responses to Particles in vivo.” ASTM International, West Conshohocken, PA, 2014,
  6. ASTM International. (2018). ASTM F1903-18. “Standard Practice for Testing for Biological Responses to Particles In Vitro.” ASTM International, West Conshohocken, PA, 2018,
  7. Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634e641.CrossRefGoogle Scholar
  8. Bahadar, H., Maqbool, F., Niaz, K., & Abdollahi, M. (2016). Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 20(1), 1–11.PubMedPubMedCentralGoogle Scholar
  9. Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A., & Dekker, C. (2003). Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Letters, 3, 727–730.CrossRefGoogle Scholar
  10. Bharti, C., Nagaich, U., Pal, A. K., & Gulati, N. (2015). Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 5(3), 124–133.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Borhani, S., Hassanajili, S., Tafti, S. H. A., & Rabbani, S. (2018). Cardiovascular stents: Overview, evolution, and next generation. Progress in Biomaterials, 7, 175–205.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boverhof, D. R., & David, R. M. (2010). Nanomaterial characterization: Considerations and needs for hazard assessment and safety evaluation. Analytical and Bioanalytical Chemistry, 396(3), 953–961.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boverhof, D. R., Bramante, C. M., Butala, J. H., Clancy, S. F., Lafranconi, M., West, J., & Gordon, S. C. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol, 73(1), 137–150.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Casals, E., Pfaller, T., et al. (2011). Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe(3) O(4), CoO and CeO(2)) nanoparticles. Small, 7(24), 3479–3486.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cedervall, T., Lynch, I., et al. (2007). Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences, 104(7), 2050–2055.CrossRefGoogle Scholar
  16. Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B., & Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163(2), 109–120.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen, W., Weng, S., Zhang, F., et al. (2012). Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano, 7(1), 566–575.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen, W., Habraken, T. C., Hennink, W. E., & Kok, R. J. (2015). Polymer-free drug-eluting stents: An overview of coating strategies and comparison with polymer-coated drug-eluting stents. Bioconjugate Chemistry, 26, 1277–1288.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chu, H., Jang, H., Lee, Y., Chae, Y., & Ahn, J. H. (2016). Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy, 27, 298–305.CrossRefGoogle Scholar
  20. Dobrovolskaia, M. A., Shurin, M., & Shvedova, A. A. (2016). Current understanding of interactions between nanoparticles and the immune system. Toxicology and Applied Pharmacology, 299, 78–89.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Donaldson, K., & Poland, C. A. (2013). Nanotoxicity: Challenging the myth of nanospecific toxicity. Current Opinion in Biotechnology, 24, 724e734.CrossRefGoogle Scholar
  22. European Union. (1990). Council Directive on the approximation of the laws of the Member States relating to active implantable medical devices (90/385/EEC). 20 June 1990, pp. 1–17.Google Scholar
  23. European Union. (1993). Council Directive 93/42/EEC concerning medical devices. 14 June 1993, pp. 1–60.Google Scholar
  24. European Union. (1998). Directive 98/79/EC of the European Parliament and of the Council of on in vitro diagnostic medical devices. 27 October 1998, pp. 1–30.Google Scholar
  25. European Union. (2017). European Parliament. Regulation EU 2017/745 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No. 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC. 5 April 2017, pp. 1–200Google Scholar
  26. Faunce, T. A., White, J., et al. (2008). Integrated research into the nanoparticle-protein corona: A new focus for safe, sustainable and equitable development of nanomedicines. Nanomedicine (London, England), 3(6), 859–866.CrossRefGoogle Scholar
  27. Fong, J., & Wood, F. (2006). Nanocrystalline silver dressings in wound management: A review. International Journal of Nanomedicine, 1(4), 441–449.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Freitas, R. (1999). Nanomedicine [Internet]. [cited 2019 Feb 18]. Available from:
  29. Frohlich, E., & Roblegg, E. (2012). Models for oral uptake of nanoparticles in consumer products. Toxicology, 291(1–3), 10–17.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Garnett, M. C., & Kallinteri, P. (2006). Nanomedicines and nantoxicology: Some physiological principles. Occupational Medicine (London), 56(5), 307–311.CrossRefGoogle Scholar
  31. Ge, C., Du, J., et al. (2011). Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 108(41), 16968–16973.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hagens, W. I., Oomen, A. G., de Jong, W. H., Casse, F. R., & Sips, A. J. (2007). What do we need to know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology, 49(3), 217–229.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hamburg, M. A. (2012). FDA’s approach to regulation of products of nanotechnology. Science, 336, 299e300.Google Scholar
  34. Hemshekhar, M., Thushara, R. M., Chandranayaka, S., Sherman, L. S., Kemparaju, K., & Girish, K. S. (2016). Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 86, 917–928.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hobson, D. W. (2009). Commercialization of nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(2), 189–202.PubMedGoogle Scholar
  36. Hobson, D. W. (2016). The commercialization of medical nanotechnology for medical applications. pp. 405–449. In A. Prokop & V. Weissig (Eds.), Intracellular delivery III. Fundamental biomedical technologies. Springer International Publishing Switzerland, 2006.Google Scholar
  37. Hobson, D. W., Roberts, S. M., Shvedova, A. A., Warheit, D. B., Hinkley, G. K., & Guy, R. C. (2016). Applied nanotoxicology. International Journal of Toxicology, 35(1), 5–16.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Holdren, J. P., Sustain, C. R., & Siddiqui, I. A. (2011, June 9). Policy principles for the U.S. decision-making concerning regulation and oversight of applications of nanotechnology and nanomaterials. Memorandum for the heads of executive departments and agencies. Accessed: 9 May 2018.
  39. Hu, T., et al. (2015). Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: Recent progress and future prospects. ACS Applied Materials & Interfaces, 7, 11695–11712.CrossRefGoogle Scholar
  40. Hu, L.-X., Hu, S.-F., Rao, M., Yang, J., Lei, H., Duan, Z., Xia, W., & Zhu, C. (2018). Studies of acute and subchronic systemic toxicity associated with a copper/low-density polyethylene nanocomposite intrauterine device. International Journal of Nanomedicine, 13, 4913–4926.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Igami, M., & Okazaki, T.. (2007) Capturing nanotechnology’s current state of development via 7 analysis of patents. OECD Science, Technology and Industry Working Papers; 2007.Google Scholar
  42. International Journal of Nanotechnology and Allied Sciences. (2018). Instructions for authors. Accessed 31 Dec 2018.
  43. International Organization for Standardization. (2018). ISO 10993-1: Biological evaluation of medical devices – Parts 1 through 12: Evaluation and testing within a risk management process. 2018, 41pp.Google Scholar
  44. ISO, International Organization for Standardization. (2008). Technical specification: Nanotechnologies terminology and definitions for nano-objects, nanoparticle, nanofibre and nanoplate. ISO/TS 80004-2.Google Scholar
  45. ISO, International Organization for Standardization. (2010). Nanotechnologies vocabulary part 1: Core terms. ISO/TS 80004-1.Google Scholar
  46. ISO/TR 10993-22: 2 Biological evaluation of medical devices – Part 22: Guidance on nanomaterials. 2017, 61pp.Google Scholar
  47. Jachak, A., et al. (2012). Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology, 6(6), 614–622.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jiang, X., Weise, S., et al. (2010). Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. Journal of the Royal Society Interface, 7(Suppl. 1), S5–S13.Google Scholar
  49. JSA – JIS T 14971. (2012). Medical devices – Application of risk management to medical devices. 1 March 2012, 94pp.Google Scholar
  50. Kim, J., Lee, M. S., Jeon, S., Kim, M., Kim, S., Kim, K., Bien, F., Hong, S. Y., & Park, J. U. (2015). Highly transparent and stretchable field-effect transistor sensors using graphene–nanowire hybrid nanostructures. Advanced Materials, 27, 3292–3297.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kumari, A., Singla, R., Guliani, A., & Yadav, S. K. (2014). Nanoencapsulation for drug delivery. EXCLI Journal, 13, 265–286.PubMedPubMedCentralGoogle Scholar
  52. Kunzmann, A., et al. (2011). Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta, 1810(3), 361–373.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lai, X., Blazer-Yost, B. L., et al. (2013). Protein expression profiles of intestinal epithelial co-cultures after low level exposure to functionalized carbon nanotubes. International Journal of Biomedical Nanoscience and Nanotechnology, 3(1–2), 1–36.Google Scholar
  54. Lee, M. S., Lee, K., Kim, S. Y., Lee, H., Park, J., Choi, K. H., Kim, H. K., Kim, D. G., Lee, D. Y., Nam, S., & Park, J. U. (2013). High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano Letters, 13, 2814–2821.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., Yuan, Y., & Liao, M. (2008). Integrated metabolomic analysis of the nanosized copper particle-induced hepatotoxicity and nephro-toxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 232(2), 292–301.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Li, J., Zhang, K., Wu, F., He, Z., Yang, P., & Huang, N. (2015a). Constructing bio-functional layers of hyaluronan and type IV collagen on titanium surface for improving endothelialization. Journal of Materials Science, 50, 3226–3236.CrossRefGoogle Scholar
  57. Li, J., Zhang, K., Wu, J., Zhang, L., Yang, P., Tu, Q., & Huang, N. (2015b). Tailoring of the titanium surface by preparing cardiovascular endothelial extracellular matrix layer on the hyaluronic acid micro-pattern for improving biocompatibility. Colloids and Surfaces, B: Biointerfaces, 128, 201–210.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Li, J., Wu, F., Zhang, K., He, Z., Zou, D., Luo, X., Fan, Y., Yang, P., Zhao, A., & Huang, N. (2017). Controlling molecular weight of hyaluronic acid conjugated on amine-rich surface: Toward better multifunctional biomaterials for cardiovascular implants. ACS Applied Materials & Interfaces, 9, 30343–30358.CrossRefGoogle Scholar
  59. Limaye, V., Fortwengel, G., & Limaye, D. (2014). Regulatory roadmap for nanotechnology based medicines: Review. International Journal of Drug Regulatory Affairs, 2(4), 33–41.CrossRefGoogle Scholar
  60. Liu, T., Zeng, Z., Liu, Y., Wang, J., Maitz, M. F., Wang, Y., Liu, S., Chen, J., & Huang, N. (2014). Surface modification with dopamine and heparin/poly-l-lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions. ACS Applied Materials & Interfaces, 6, 8729–8743.CrossRefGoogle Scholar
  61. Lundqvist, M., Stigler, J., et al. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 105(38), 14265–14270.CrossRefGoogle Scholar
  62. Lynch, I., Cedervall, T., et al. (2007). The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science, 134–135, 167–174.PubMedCrossRefPubMedCentralGoogle Scholar
  63. McGill, S. L., & Smyth, H. D. (2010). Disruption of the mucus barrier by topically applied exogenous particles. Molecular Pharmaceutics, 7(6), 2280–2288.PubMedPubMedCentralCrossRefGoogle Scholar
  64. McGinty, S., McKee, S., McCormick, C., & Wheel, M. (2014). Release mechanism and parameter estimation in drug-eluting stent systems: Analytical solutions of drug release and tissue transport. Mathematical Medicine and Biology, 32(2), 163–186.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Meng, H., Chen, Z., Xing, G., Yuan, H., Chen, C., Zhao, F., Zhang, C., & Zhao, Y. (2007). Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nanocopper particles. Toxicology Letters, 175(1–3), 102–110.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Monopoli, M. P., Walczyk, D., et al. (2011). Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society, 133(8), 2525–2534.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Monteiro-Riviere, N. A., & Tran, C. L. (Eds.). (2016). Nanotoxicology: Progress toward nanomedicine (2nd ed... 514pp). Boca Raton: CRC Press.Google Scholar
  68. Morie, A., Garg, T., Goyal, A. K., & Rath, G. (2016). Nanofibers as novel drug carrier—An overview. Artificial Cells, Nanomedicine, and Biotechnology, 44, 135–143.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Naik, K., Srivastava, P., Deshmukh, K., Monsoor, M. S., & Kowshik, M. (2015). Nanomaterial-based approaches for prevention of biofilm-associated infections on medical devices and implants. Journal of Nanoscience and Nanotechnology, 15(12), 10108–10119.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Nakazawa, G., Finn, A. V., Ladich, E., Ribichini, F., Coleman, L., Kolodgie, F. D., & Virmani, R. (2008). Drug-eluting stent safety: Findings from preclinical studies. Expert Review of Cardiovascular Therapy, 6, 1379–1391.PubMedCrossRefPubMedCentralGoogle Scholar
  71. National Nanotechnology Initiative. (2018a). What is nanotechnology? Accessed 31 December 2018.
  72. National Nanotechnology Initiative. (2018b). Standards for nanotechnology. Accessed 31 December 2018.
  73. Nature Nanotechnology. (2018). Instructions to authors. Accessed 31 2018.
  74. Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5, 081–089.CrossRefGoogle Scholar
  75. Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Perspectives Environmental Health, 113(7), 823–839.CrossRefGoogle Scholar
  76. Obiweluozor, F. O., Emechebe, G. A., Tiwari, A. P., Kim, J. Y., Park, C. H., & Kim, C. S. (2018). Short duration cancer treatment: inspired by a fast bio-resorbable smart nano-fiber device containing NIR lethal polydopamine nanospheres for effective chemo-photothermal cancer therapy. International Journal of Nanomedicine, 13, 6375–6390.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pamornpathomkul, B., Wongkajornsilp, A., Laiwattanapaisal, W., Rojanarata, T., Opanasopit, P., & Ngawhirunpat, T. (2017). A combined approach of hollow microneedles and nanocarriers for skin immunization with plasmid DNA encoding ovalbumin. International Journal of Nanomedicine, 12, 885–898.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Paradis, J. (2012). Claiming nanotechnology: Improving USPTO efforts at classification of emerging nano-enabled pharmaceutical technologies. Northwestern Journal of Technology and Intellectual Property, 10(3), 169–208.Google Scholar
  79. Park, J., Kim, J., Kim, S. Y., Cheong, W. H., Jang, J., Park, Y. G., Na, K., Kim, Y. T., Heo, J. H., Lee, C. Y., Lee, J. H., Bien, F., & Park, J. U. (2018, January). Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Advances, 1–11, 24.Google Scholar
  80. Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Lu, G. Q. M. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3, 2801–2818.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Powers, K. W., Carpinone, P. L., & Siebein, K. N. (2012). Characterization of nanomaterials for toxicological studies. Methods in Molecular Biology, 926, 13–32.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Riasat, R., Guangjun, N., Riasat, Z., Aslam, I., & Sakeena, M. (2016). Effects of nanoparticles on gastrointestinal disorders and therapy. Journal of Clinical Toxicology, 6, 4.CrossRefGoogle Scholar
  83. Rivera, G. P., et al. (2010). Correlating physico-chemical with toxicological properties of nanoparticles: The present and the future. ACS Nano, 4(10), 5527–5531.CrossRefGoogle Scholar
  84. Roy, R., Kumar, S., Tripathi, A., Das, M., & Dwivedi, P. D. (2014). Interactive threats of nanoparticles to the biological system. Immunology Letters, 158, 79–87.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Safi, M., Courtois, J., et al. (2011). The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials, 32(35), 9353–9363.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Saleh, Y. E., Gepreel, M. A., & Allam, N. K. (2017). Functional nano-architectures for enhanced drug eluting stents. Scientific Reports, 7, 40291.PubMedPubMedCentralCrossRefGoogle Scholar
  87. SCENIHR, Opinion on the Appropriateness of the Risk Assessment Methodology in Accordance with the Technical Guidance Documents for New and Existing Substances for Assessing the Risks of Nanomaterials. 21e22 June 2007. Scientific Committee on Emerging and Newly-Identified Health Risks. 2007.Google Scholar
  88. Sengupta, J., Ghosh, S., Datta, P., Gomes, A., & Gomes, A. (2014). Physiologically important metal nanoparticles and their toxicity. Journal of Nanoscience and Nanotechnology, 14, 990–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P., & Heyder, J. (2001). Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives, 109(4), 547–551.PubMedPubMedCentralGoogle Scholar
  90. U.S. Department of Health and Human Services Food and Drug Administration. (2017, December). Drug products, including biological products, that contain nanomaterials guidance for industry. 24pp.Google Scholar
  91. U.S. FDA. (2014a) Guidance for industry: Safety of nanomaterials in cosmetic products. 1–16, June 2014.Google Scholar
  92. U.S. FDA. (2014b). Guidance for industry: Assessing the effects of significant manufacturing process changes, including emerging technologies, on the safety and regulatory status of food ingredients and food contact substances, including food ingredients that are color additives, 1–29, June 2014.Google Scholar
  93. U.S. FDA. (2015). Guidance for Industry: Use of Nanomaterials in Food for Animals. 1–11, August 2015.Google Scholar
  94. U.S. FDA. (2016). Use of International Standard ISO 10993-1, “Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process.” Guidance for Industry and Food and Drug Administration Staff. June 16, 2016, pp. 1–65.Google Scholar
  95. U.S. Food and Drug Administration. (2014) Considering whether an FDA-regulated product involves the application of nanotechnology June 2014. Accessed 31 December 2018.
  96. Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S. Y. (2010). Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 6, 1952–1967.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wang, Y. Y., Lai, S. K., et al. (2011). Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLoS One, 6(6), e21547.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yang, Y. X., Song, Z. M., Cheng, B., Xiang, K., Chen, X. X., et al. (2014). Evaluation of the toxicity of food additive silica nanoparticles on gastrointestinal cells. Journal of Applied Toxicology, 34, 424–435.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yang, Y., Pengkai, Q., Yonghui, D., Maitz, M. F., Zhi, L. Y., Qiu, F. T., Kaiqin, X., Yang, L., & Nan, H. (2015). A biocompatible and functional adhesive amine rich coating based on dopamine polymerization. Journal of Materials Chemistry B, 3, 72–81.CrossRefGoogle Scholar
  100. Yin, R. X., Yang, D. Z., & Wu, J. Z. (2014). Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics, 4(2), 175–200.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yoo, H. S., Oh, J. E., Lee, K. H., & Park, T. G. (1999). Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharmaceutical Research, 16, 1114–1118.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Yoshida, Y., Churei, H., Takeuchi, Y., Wada, T., Uo, M., Izumi, Y., & Ueno, T. (2018). Novel antibacterial mouthguard material manufactured using silver-nanoparticle-embedded ethylene-vinyl acetate copolymer masterbatch. Dental Materials Journal, 37(3), 437–444.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Zhang, L., Shizhang, Q., Yonggang, J., Huagui, Y., Sandy, B., Frances, S., Zifeng, Y., Xiaolin, W., Zhengping, H., & Max, L. (2008). Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructured. Advanced Functional Materials, 18, 3203–3212.CrossRefGoogle Scholar
  104. Zhang, H., Burnum, K. E., et al. (2011). Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics, 11(23), 4569–4577.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhao, L., Chu, P. K., Zhang, Y., & Wu, Z. (2009). Antibacterial coatings on titanium implants. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 91(1), 470–480.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Zhou, Z., Jiang, C., Li-jie, X., Ying, X., Ping, Y., Jingan, L., Jue-jue, W., & Nan, H. (2014). Fabrication of 3D TiO2 micromesh on silicon surface and its effects on platelet adhesion. Materials Letters, 132, 149–152.CrossRefGoogle Scholar
  107. Zolnik, B. S., González-Fernández, A., Sadrieh, N., & Dobrovolskaia, M. A. (2010). Nanoparticles and the immune system. Endocrinology, 151(2), 458–465.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LoneStar PharmTox LLCBoerneUSA

Personalised recommendations