Advertisement

Efficient Deployment and Mission Timing of Autonomous Underwater Vehicles in Large-Scale Operations

  • Somaiyeh MahmoudZadehEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11888)

Abstract

This study introduces a connective model of routing- local path planning for Autonomous Underwater Vehicle (AUV) time efficient maneuver in long-range operations. Assuming the vehicle operating in a turbulent underwater environment, the local path planner produces the water-current resilient shortest paths along the existent nodes in the global route. A re-routing procedure is defined to re-organize the order of nodes in a route and compensate any lost time during the mission. The Firefly Optimization Algorithm (FOA) is conducted by both of the planners to validate the model’s performance in mission timing and its robustness against water current variations. Considering the limitation over the battery lifetime, the model offers an accurate mission timing and real-time performance. The routing system and the local path planner operate cooperatively, and this is another reason for model’s real-time performance. The simulation results confirms the model’s capability in fulfilment of the expected criterion and proves its significant robustness against underwater uncertainties and variations of the mission conditions.

Keywords

Autonomy Firefly Optimization Algorithm Local path planning Mission routing Mission time management 

References

  1. 1.
    Djapic, V., Nad D.: Using collaborative autonomous vehicles in mine countermeasures. In: Oceans’10 IEEE Sydney (2010)Google Scholar
  2. 2.
    Carsten, J., Ferguson, D., Stentz, A.: 3D field D*: improved path planning and replanning in three dimensions. In: IEEE International Conference on Intelligent Robots and Systems 2006, pp. 3381–3386 (2006)Google Scholar
  3. 3.
    Koay, T.B., Chitre, M.: Energy-efficient path planning for fully propelled AUVs in congested coastal waters. The Challenges of the Northern Dimension, Oceans MTS/IEEE Bergen (2013)Google Scholar
  4. 4.
    Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., Lane, D.: Path planning for autonomous underwater vehicles. IEEE Trans. Rob. 23(2), 331–341 (2007)CrossRefGoogle Scholar
  5. 5.
    Kwok, K.S., Driessen, B.J., Phillips, C., Tovey, C.A.: Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms. J. Intell. Rob. Syst. 35(1), 111–122 (2002)CrossRefGoogle Scholar
  6. 6.
    Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 9(1), 132–141 (2013)CrossRefGoogle Scholar
  7. 7.
    Atyabi, A., MahmoudZadeh, S., Nefti-Meziani, S.: Current advancements on autonomous mission planning and management systems: an AUV and UAV perspective. J. Ann. Rev. Control 46, 196–215 (2018)CrossRefGoogle Scholar
  8. 8.
    MahmoudZadeh, S., Yazdani, A., Sammut, K., Powers, D.: Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms. J. Appl. Soft Comput. (2017).  https://doi.org/10.1016/j.asoc.2017.10.025CrossRefGoogle Scholar
  9. 9.
    Ataei, M., Yousefi-Koma, A.: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle. Robotics and Autonomous Systems (2014)Google Scholar
  10. 10.
    MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A.: Efficient AUV path planning in time-variant underwater environment using differential evolution algorithm. J. Mar. Sci. Appl. (2018).  https://doi.org/10.1007/s11804-018-0034-4CrossRefGoogle Scholar
  11. 11.
    MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A.: Optimal route planning with prioritized task scheduling for AUV missions. In: IEEE International Symposium on Robotics and Intelligent Sensors 2015, pp. 7–15 (2015)Google Scholar
  12. 12.
    MahmoudZadeh, S., Powers, D., Yazdani, A.: A novel efficient task-assign route planning method for AUV guidance in a dynamic cluttered environment. In: IEEE Congress on Evolutionary Computation (CEC), Vancouver, Canada, pp. 678–684. CoRR abs/1604.02524 (2016)Google Scholar
  13. 13.
    MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A.: Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management. J. Marine Sci. Appl. 15(4), 463–477 (2016)CrossRefGoogle Scholar
  14. 14.
    Garau, B., Alvarez, A., Oliver, G.: AUV navigation through turbulent ocean environments supported by onboard H-ADCP. In: IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006Google Scholar
  15. 15.
    MahmoudZadeh, S., Powers, D., Sammut, K.: An autonomous dynamic motion-planning architecture for efficient AUV mission time management in realistic sever ocean environment. Robot. Auton. Syst. 87, 81–103 (2017)CrossRefGoogle Scholar
  16. 16.
    MahmoudZadeh, S., Powers, D., Sammut, K., Atyabi, A., Yazdani, A.: A hierarchal planning framework for AUV mission management in a spatiotemporal varying ocean. J. Comput. Electr. Eng. 67, 741–760 (2018)CrossRefGoogle Scholar
  17. 17.
    MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A., Atyabi, A.: Hybrid motion planning task allocation model for AUV’s safe maneuvering in a realistic ocean environment. J. Intell. Rob. Syst. 2018, 1–18 (2018)Google Scholar
  18. 18.
    MahmoudZadeh, S., Powers, D., Sammut, K., Atyabi, A., Yazdani, A.: Hybrid motion planning task allocation model for AUV’s safe maneuvering in a realistic ocean environment. J. Intell. Robot. Syst., 1–18 (2018)Google Scholar
  19. 19.
    MahmoudZadeh, S., Powers, K., Atyabi A.: UUV’s hierarchical DE-based motion planning in a semi dynamic underwater wireless sensor network. IEEE Trans. Cybern. 99, 1–14.  https://doi.org/10.1109/tcyb.2018.2837134CrossRefGoogle Scholar
  20. 20.
    Fossen, T.: Marine control systems: guidance, navigation and control of ships. Rigs Underwater Vehicles. Marine Cybernetics Trondheim, Norway (2002)Google Scholar
  21. 21.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, UK (2010)Google Scholar
  22. 22.
    Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. J. Swarm Intell. 1(1), 36–50 (2013)CrossRefGoogle Scholar
  23. 23.
    MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A.: A novel versatile architecture for autonomous underwater vehicle’s motion planning and task assignment. J. Soft Comput. 20(188), 1–24 (2016).  https://doi.org/10.1007/s00500-016-2433-2CrossRefGoogle Scholar
  24. 24.
    MahmoudZadeh, S., Powers, D., Bairam Zadeh, R.: Autonomy and Unmanned Vehicles “Augmented Reactive Mission–Motion Planning Architecture for Autonomous Vehicles”, Springer Nature, Cognitive Science and Technology (2019).  https://doi.org/10.1007/978-981-13-2245-7, ISBN 978-981-13-2245-7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Information TechnologyDeakin UniversityGeelongAustralia

Personalised recommendations