Hybrid Semantics-Aware Recommendations Exploiting Knowledge Graph Embeddings

  • Cataldo MustoEmail author
  • Pierpaolo Basile
  • Giovanni Semeraro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)


Graph-based recommendation methods represent an established research line in the area of recommender systems. Basically, these approaches provide users with personalized suggestions by modeling a bipartite graph that connects the users to the items they like and exploit such connections to identify items that are interesting for the target user.

In this work we propose a hybrid semantics-aware recommendation method that aims to improve classical graph-based approaches in a twofold way: (i) we extend and enhance the representation by modeling a tripartite graph, that also includes descriptive properties of the items in the form of DBpedia entities. (ii) we run graph embedding techniques over the resulting graph, in order to obtain a vector-space representation of the items to be recommended.

Given such a representation, we use the resulting embeddings to cast the recommendation problem to a classification one. In particular, we learn a classification model by exploiting positive and negative embeddings (the items the user liked and those she did not like, respectively), and we use such a model to classify new items as interesting or not interesting for the target user.

In the experimental evaluation we evaluated the effectiveness of our method on varying of different graph embedding techniques and on several topologies of the graph. Results show that the embeddings learnt by combining collaborative data points with the information gathered from DBpedia led to the best results and also beat several state-of-the-art techniques.


Recommender system Graph embedding Linked data 


  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC-2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). Scholar
  2. 2.
    Basile, P., Musto, C., de Gemmis, M., Lops, P., Narducci, F., Semeraro, G.: Aggregation strategies for linked open data-enabled recommender systems. In: European Semantic Web Conference (2014)Google Scholar
  3. 3.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)Google Scholar
  4. 4.
    Bizer, C.: The emerging web of linked data. IEEE Intell. Syst. 24(5), 87–92 (2009)CrossRefGoogle Scholar
  5. 5.
    Bogers, T.: Movie recommendation using random walks over the contextual graph. In: Proceedings of the 2nd International Workshop on Context-Aware Recommender Systems (2010)Google Scholar
  6. 6.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)Google Scholar
  7. 7.
    de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 119–159. Springer, Boston (2015). Scholar
  8. 8.
    Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. arXiv preprint arXiv:1705.02801 (2017)
  9. 9.
    Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)Google Scholar
  10. 10.
    Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)CrossRefGoogle Scholar
  11. 11.
    Huang, Z., Chung, W., Ong, T.-H., Chen, H.: A graph-based recommender system for digital library. In: Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 65–73. ACM (2002)Google Scholar
  12. 12.
    Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). Scholar
  13. 13.
    Lops, P., de Gemmis, M., Semeraro, G., Musto, C., Narducci, F., Bux, M.: A semantic content-based recommender system integrating folksonomies for personalized access. In: Castellano, G., Jain, L.C., Fanelli, A.M. (eds.) Web Personalization in Intelligent Environments. Studies in Computational Intelligence, vol. 229, pp. 27–47. Springer, Heidelberg (2009). Scholar
  14. 14.
    Musto, C., Basile, P., Lops, P., de Gemmis, M., Semeraro, G.: Introducing linked open data in graph-based recommender systems. Inf. Process. Manag. 53(2), 405–435 (2017)CrossRefGoogle Scholar
  15. 15.
    Musto, C., Lops, P., de Gemmis, M., Semeraro, G.: Semantics-aware recommender systems exploiting linked open data and graph-based features. Knowl.-Based Syst. 136, 1–14 (2017)CrossRefGoogle Scholar
  16. 16.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Random indexing and negative user preferences for enhancing content-based recommender systems. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 270–281. Springer, Heidelberg (2011). Scholar
  17. 17.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M., Narducci, F.: Leveraging social media sources to generate personalized music playlists. In: Huemer, C., Lops, P. (eds.) EC-Web 2012. LNBIP, vol. 123, pp. 112–123. Springer, Heidelberg (2012). Scholar
  18. 18.
    Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-N recommendations from implicit feedback leveraging linked open data. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 85–92. ACM (2013)Google Scholar
  19. 19.
    Palumbo, E., Rizzo, G., Troncy, R.: Entity2rec: learning user-item relatedness from knowledge graphs for top-N item recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 32–36. ACM (2017)Google Scholar
  20. 20.
    Piao, G., Breslin, J.G.: Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 315–320. ACM (2016)Google Scholar
  21. 21.
    Shi, Y., Larson, M., Hanjalic, A.: Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges. ACM Comput. Surv. (CSUR) 47(1), 3 (2014)CrossRefGoogle Scholar
  22. 22.
    Wever, T., Frasincar, F.: A linked open data schema-driven approach for top-N recommendations. In: Proceedings of the Symposium on Applied Computing, pp. 656–663. ACM (2017)Google Scholar
  23. 23.
    Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.: Learning graph-based POI embedding for location-based recommendation. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 15–24. ACM (2016)Google Scholar
  24. 24.
    Zhang, Z.-K., Zhou, T., Zhang, Y.-C.: Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs. Phys. A 389(1), 179–186 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cataldo Musto
    • 1
    Email author
  • Pierpaolo Basile
    • 1
  • Giovanni Semeraro
    • 1
  1. 1.Department of Computer ScienceUniversity of Bari Aldo MoroBariItaly

Personalised recommendations