Advertisement

A Deep Hybrid Model for Recommendation Systems

  • Muhammet ÇakırEmail author
  • Şule Gündüz Öğüdücü
  • Resul Tugay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)

Abstract

Recommendation has been a long-standing problem in many areas ranging from e-commerce to social websites. Most current studies focus only on traditional approaches such as content-based or collaborative filtering while there are relatively fewer studies in hybrid recommendation systems. With the emergence of deep learning techniques in different fields including computer vision and natural language processing, Recommendation Systems (RSs) have also become an active area of for these techniques. There are several studies that utilize ID embeddings of users and items to implement collaborative filtering with deep neural networks. However, such studies do not take advantage of other categorical or continuous features of inputs. In this paper, we propose a new deep neural network architecture which uses ID embeddings, and also auxiliary information such as features of job postings and candidates. Experimental results on a real world dataset from a job website show that the proposed method improves recommendation results over deep learning models utilizing only ID embeddings.

Keywords

Content-based filtering Collaborative Filtering Hybrid systems Deep neural networks Job Recommendation Implicit feedback 

References

  1. 1.
    Barkan, O., Koenigstein, N.: Item2vec: neural item embedding for collaborative filtering. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE (2016)Google Scholar
  2. 2.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the Fifth ACM Conference on Digital Libraries. ACM (2000)Google Scholar
  3. 3.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72079-9_10CrossRefGoogle Scholar
  4. 4.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW 2001, pp. 285–295 (2001)Google Scholar
  5. 5.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72079-9_9CrossRefGoogle Scholar
  6. 6.
    Burke, R.: Knowledge-based recommender systems. Encycl. Libr. Inf. Syst. 69, 175–186 (2000)Google Scholar
  7. 7.
    Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12, 331–370 (2002)CrossRefGoogle Scholar
  8. 8.
    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72079-9_12CrossRefGoogle Scholar
  9. 9.
    Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston, MA (2011).  https://doi.org/10.1007/978-0-387-85820-3_3CrossRefGoogle Scholar
  10. 10.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)zbMATHGoogle Scholar
  11. 11.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  12. 12.
    He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  13. 13.
    Wang, H., Wang, N., Yeung, D.-Y.: Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1235–1244. ACM (2015)Google Scholar
  14. 14.
    Van den Oord, A., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: Advances in Neural Information Processing Systems, pp. 2643–2651 (2013)Google Scholar
  15. 15.
    Wang, X., Wang, Y.: Improving content-based and hybrid music recommendation using deep learning. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 627–636. ACM (2014)Google Scholar
  16. 16.
    Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.-Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362. ACM (2016)Google Scholar
  17. 17.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  18. 18.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)CrossRefGoogle Scholar
  19. 19.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)Google Scholar
  20. 20.
    Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems, pp. 1257–1264 (2008)Google Scholar
  21. 21.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM, pp. 263–272. Citeseer (2008)Google Scholar
  22. 22.
    He, X., Zhang, H., Kan, M.-Y., Chua, T.-S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 549–558. ACM (2016)Google Scholar
  23. 23.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)Google Scholar
  24. 24.
    Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2010)Google Scholar
  25. 25.
    Paparrizos, I., Cambazoglu, B.B., Gionis, A.: Machine learned job recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 325–328. ACM (2011)Google Scholar
  26. 26.
    Al-Otaibi, S.T., Ykhlef, M.: A survey of job recommender systems. Int. J. Phys. Sci. 7, 5127–5142 (2012)CrossRefGoogle Scholar
  27. 27.
    Pizzato, L., Rej, T., Chung, T., Koprinska, I., Kay, J.: RECON: a reciprocal recommender for online dating. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 207–214. ACM (2010)Google Scholar
  28. 28.
    Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. (CSUR) 52 (2019). Article no. 5Google Scholar
  29. 29.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  30. 30.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)Google Scholar
  31. 31.
    Covington, P., Adams, J., Sargin, E.: Deep neural networks for Youtube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198. ACM (2016)Google Scholar
  32. 32.
    Cheng, H.-T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016)Google Scholar
  33. 33.
    Albadvi, A., Shahbazi, M.: A hybrid recommendation technique based on product category attributes. Expert Syst. Appl. 36, 11480–11488 (2009)CrossRefGoogle Scholar
  34. 34.
    Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40, 66–72 (1997)CrossRefGoogle Scholar
  35. 35.
    Soboroff, I., Nicholas, C.: Combining content and collaboration in text filtering. In: Proceedings of the IJCAI, pp. 86–91, sn (1999)Google Scholar
  36. 36.
    Wang, J., Kenthapadi, K., Rangadurai, K., Hardtke, D.: Dionysius: a framework for modeling hierarchical user interactions in recommender systems. arXiv preprint arXiv:1706.03849 (2017)
  37. 37.
    Lee, Y.-C., Hong, J., Kim, S.-W.: Job recommendation in AskStory: experiences, methods, and evaluation. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 780–786. ACM (2016)Google Scholar
  38. 38.
    Xia, P., Liu, B., Sun, Y., Chen, C.: Reciprocal recommendation system for online dating. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 234–241. ACM (2015)Google Scholar
  39. 39.
    Li, L., Li, T.: MEET: a generalized framework for reciprocal recommender systems. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 35–44. ACM (2012)Google Scholar
  40. 40.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammet Çakır
    • 1
    Email author
  • Şule Gündüz Öğüdücü
    • 1
  • Resul Tugay
    • 1
  1. 1.Computer Engineering DepartmentIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations