Multi-agent Path Finding with Capacity Constraints

  • Pavel SurynekEmail author
  • T. K. Satish Kumar
  • Sven Koenig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)


In multi-agent path finding (MAPF) the task is to navigate agents from their starting positions to given individual goals. The problem takes place in an undirected graph whose vertices represent positions and edges define the topology. Agents can move to neighbor vertices across edges. In the standard MAPF, space occupation by agents is modeled by a capacity constraint that permits at most one agent per vertex. We suggest an extension of MAPF in this paper that permits more than one agent per vertex. Propositional satisfiability (SAT) models for these extensions of MAPF are studied. We focus on modeling capacity constraints in SAT-based formulations of MAPF and evaluation of performance of these models. We extend two existing SAT-based formulations with vertex capacity constraints: MDD-SAT and SMT-CBS where the former is an approach that builds the model in an eager way while the latter relies on lazy construction of the model.


Multi agent path finding propositional satisfiability (SAT) Capacity constraints Cardinality constraints 



This research has been supported by GAČR - the Czech Science Foundation, grant registration number 19-17966S.


  1. 1.
    Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). Scholar
  2. 2.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI, pp. 399–404 (2009)Google Scholar
  3. 3.
    Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). Scholar
  4. 4.
    Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  5. 5.
    Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with SAT modulo theories. Constraints 17(3), 273–303 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyarski, E., et al.: ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In: IJCAI, pp. 740–746 (2015)Google Scholar
  7. 7.
    Dresner, K., Stone, P.: A multiagent approach to autonomous intersection management. JAIR 31, 591–656 (2008)CrossRefGoogle Scholar
  8. 8.
    Hönig, W., et al.: Summary: multi-agent path finding with kinematic constraints. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 4869–4873 (2017)Google Scholar
  9. 9.
    Kornhauser, D., Miller, G.L., Spirakis, P.G.: Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In: FOCS 1984, pp. 241–250 (1984)Google Scholar
  10. 10.
    Kumar, K., Romanski, J., Hentenryck, P.V.: Optimizing infrastructure enhancements for evacuation planning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3864–3870. AAAI Press (2016)Google Scholar
  11. 11.
    Li, J., Surynek, P., Felner, A., Ma, H., Koenig, S.: Multi-agent path finding for large agents. In: AAAI, pp. 7627–7634. AAAI Press (2019)Google Scholar
  12. 12.
    Liu, S., Mohta, K., Atanasov, N., Kumar, V.: Towards search-based motion planning for micro aerial vehicles. CoRR abs/1810.03071 (2018).
  13. 13.
    Ma, H., et al.: Overview: generalizations of multi-agent path finding to real-world scenarios. CoRR abs/1702.05515 (2017).
  14. 14.
    Ma, H., Wagner, G., Felner, A., Li, J., Kumar, T.K.S., Koenig, S.: Multi-agent path finding with deadlines. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden, pp. 417–423 (2018)Google Scholar
  15. 15.
    Nieuwenhuis, R.: SAT modulo theories: getting the best of SAT and global constraint filtering. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 1–2. Springer, Heidelberg (2010). Scholar
  16. 16.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ratner, D., Warmuth, M.K.: Finding a shortest solution for the N \(\times \) N extension of the 15-puzzle is intractable. In: AAAI, pp. 168–172 (1986)Google Scholar
  18. 18.
    Ryan, M.R.K.: Exploiting subgraph structure in multi-robot path planning. J. Artif. Intell. Res. (JAIR) 31, 497–542 (2008)CrossRefGoogle Scholar
  19. 19.
    Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search for optimal multi-agent pathfinding. Artif. Intell. 195, 470–495 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent path finding. In: AAAI (2012)Google Scholar
  22. 22.
    Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: CP, pp. 483–497 (2007)Google Scholar
  23. 23.
    Silver, D.: Cooperative pathfinding. In: AIIDE, pp. 117–122 (2005)Google Scholar
  24. 24.
    Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). Scholar
  25. 25.
    Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: AAAI, pp. 173–178 (2010)Google Scholar
  26. 26.
    Sturtevant, N.R.: Benchmarks for grid-based pathfinding. Comput. Intell. AI Games 4(2), 144–148 (2012)CrossRefGoogle Scholar
  27. 27.
    Surynek, P.: A novel approach to path planning for multiple robots in bi-connected graphs. In: ICRA 2009, pp. 3613–3619 (2009)Google Scholar
  28. 28.
    Surynek, P.: Time-expanded graph-based propositional encodings for makespan-optimal solving of cooperative path finding problems. Ann. Math. Artif. Intell. 81(3–4), 329–375 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Surynek, P.: Lazy modeling of variants of token swapping problem and multi-agent path finding through combination of satisfiability modulo theories and conflict-based search. CoRR abs/1809.05959 (2018).
  30. 30.
    Surynek, P.: Unifying search-based and compilation-based approaches to multi-agent path finding through satisfiability modulo theories. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 1177–1183. (2019)Google Scholar
  31. 31.
    Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient SAT approach to multi-agent path finding under the sum of costs objective. In: ECAI, pp. 810–818 (2016)Google Scholar
  32. 32.
    Wang, K., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. JAIR 42, 55–90 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Information TechnologyCzech Technical University in PraguePraha 6Czechia
  2. 2.Henry Salvatori Computer Science CenterUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Information Sciences InstituteUniversity of Southern CaliforniaMarina del ReyUSA

Personalised recommendations