Advertisement

Automated Planning Encodings for the Manipulation of Articulated Objects in 3D with Gravity

  • Riccardo Bertolucci
  • Alessio Capitanelli
  • Marco MarateaEmail author
  • Fulvio Mastrogiovanni
  • Mauro Vallati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11946)

Abstract

The manipulation of articulated objects plays an important role in real-world robot tasks, both in home and industrial environments. A lot of attention has been devoted to the development of ad hoc approaches and algorithms for generating the sequence of movements the robot has to perform in order to manipulate the object. Such approaches can hardly generalise on different settings, and are usually focused on 2D manipulations.

In this paper we introduce a set of PDDL+ formulations for performing automated manipulation of articulated objects in a three-dimensional workspace by a dual-arm robot. Presented formulations differ in terms of how gravity is modelled, considering different trade-offs between modelling accuracy and planning performance, and between human-readability and parsability by planners. Our experimental analysis compares the formulations on a range of domain-independent planners, that aim at generating plans for allowing a dual-arm robot to manipulate articulated objects of different sizes. Validation is performed in simulation on a Baxter robot.

Keywords

Mixed discrete-continuous planning Robotics application 

References

  1. 1.
    Agostini, A., Torras, C., Worgotter, F.: Integrating task planning and interactive learning for robots to work in human environments. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 2386–2391. IJCAI/AAAI (2011)Google Scholar
  2. 2.
    Balduccini, M., Magazzeni, D., Maratea, M., Leblanc, E.: CASP solutions for planning in hybrid domains. Theory Practice Logic Program. 17(4), 591–633 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bertolucci, R., et al.: An ASP-based framework for the manipulation of articulated objects using dual-arm robots. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR 2019. LNCS, vol. 11481, pp. 32–44. Springer, Heidelberg (2019).  https://doi.org/10.1007/978-3-030-20528-7_3CrossRefGoogle Scholar
  4. 4.
    Bodenhagen, L., et al.: An adaptable robot vision system performing manipulation actions with flexible objects. IEEE Trans. Autom. Sci. Eng. 11(3), 749–765 (2014)CrossRefGoogle Scholar
  5. 5.
    Bryce, D., Gao, S., Musliner, D.J., Goldman, R.P.: SMT-based nonlinear PDDL+ planning. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 3247–3253. AAAI Press (2015)Google Scholar
  6. 6.
    Cambon, S., Alami, R., Gravot, F.: A hybrid approach to intricate motion, manipulation and task planning. Int. J. Robot. Res. 28(1), 104–126 (2009)CrossRefGoogle Scholar
  7. 7.
    Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: Automated planning techniques for robot manipulation tasks involving articulated objects. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 483–497. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-70169-1_36CrossRefGoogle Scholar
  8. 8.
    Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: On the manipulation of articulated objects in human-robot cooperation scenarios. Robot. Auton. Syst. 109, 139–155 (2018)CrossRefGoogle Scholar
  9. 9.
    Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+ language into SMT. In: Proceedings of the 26th International Conference on Automated Planning and Scheduling (ICAPS 2016), pp. 79–87. AAAI Press (2016)Google Scholar
  10. 10.
    Dantam, N., Kingstone, Z., Chaudhuri, S., Kavraki, L.: An incremental constraint-based framework for task and motion planning. Int. J. Robot. Res. 37(10), 1134–1151 (2018)CrossRefGoogle Scholar
  11. 11.
    Della Penna, G., Magazzeni, D., Mercorio, F., Intrigila, B.: Upmurphi: a tool for universal planning on PDDL+ problems. In: Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009). AAAI (2009)Google Scholar
  12. 12.
    Dornhege, C., Eyerich, P., Keller, T., Trug, S., Brenner, M., Nebel, B.: Semantic attachments for domain-independent planning systems. In: Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009). AAAI (2009)Google Scholar
  13. 13.
    Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J. Artif. Intell. Res. 27, 235–297 (2006)CrossRefGoogle Scholar
  14. 14.
    Garrett, C., Perez, T., Kaelbling, L.: FF-Rob: leveraging symbolic planning for efficient task and motion planning. Int. J. Robot. Res. 37(1), 104–136 (2018)CrossRefGoogle Scholar
  15. 15.
    Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation techniques and systems for answer set programming: a survey. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 5450–5456. ijcai.org (2018)Google Scholar
  16. 16.
    Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set programming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 3–9. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61660-5_1CrossRefzbMATHGoogle Scholar
  17. 17.
    Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables in propositional satisfiability. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 296–307. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45757-7_25CrossRefzbMATHGoogle Scholar
  18. 18.
    Giunchiglia, E., Maratea, M., Tacchella, A.: (In)effectiveness of look-ahead techniques in a modern SAT solver. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 842–846. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45193-8_64CrossRefGoogle Scholar
  19. 19.
    Henrich, D., Worn, H.: Robot Manipulation of Deformable Objects. Advanced Manufacturing. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-1-4471-0749-1Google Scholar
  20. 20.
    Heyer, C.: Human-robot interaction and future industrial robotics applications. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS 2010), pp. 4749–4754. IEEE (2010)Google Scholar
  21. 21.
    Hoffmann, J.: The metric-FF planning system: translating íngnoring delete listst́o numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003)Google Scholar
  22. 22.
    Kaelbling, L., Perez, T.: Integrated task and motion planning in the belief space. Int. J. Robot. Res. 32(9–10), 1194–1227 (2013)CrossRefGoogle Scholar
  23. 23.
    Krüger, J., Lien, T., Verl, A.: Cooperation of humans and machines in the assembly lines. CIRP Ann. - Manuf. Technol. 58(2), 628–646 (2009)CrossRefGoogle Scholar
  24. 24.
    McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated planning: towards a notion of quality. In: Proceedings of the Knowledge Capture Conference (K-CAP 2017), pp. 14:1–14:8 (2017)Google Scholar
  25. 25.
    Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint logic programming. Ann. Math. Artif. Intell. 53(1–4), 251–287 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nair, A., et al.: Combining self-supervised learning and imitation for vision-based rope manipulation. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA 2017), pp. 2146–2153. IEEE (2017)Google Scholar
  27. 27.
    Piotrowski, W.M., Fox, M., Long, D., Magazzeni, D., Mercorio, F.: Heuristic planning for PDDL+ domains. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 3213–3219. IJCAI/AAAI Press (2016)Google Scholar
  28. 28.
    Ramírez, M., et al.: Integrated hybrid planning and programmed control for real time UAV maneuvering. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2018), pp. 1318–1326. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, USA/ACM (2018)Google Scholar
  29. 29.
    Saadat, M., Nan, P.: Industrial applications of automatic manipulation of flexible materials. Ind. Robot: Int. J. 29(5), 434–442 (2002)CrossRefGoogle Scholar
  30. 30.
    Scala, E., Haslum, P., Thiébaux, S., Ramírez, M.: Interval-based relaxation for general numeric planning. In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 655–663. IOS Press (2016)Google Scholar
  31. 31.
    Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through the use of non-rigid registration. In: Inaba, M., Corke, P. (eds.) Robotics Research. STAR, vol. 114. Springer, Cham.  https://doi.org/10.1007/978-3-319-28872-7_20Google Scholar
  32. 32.
    Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel, P.: Combined task and motion planning through an extensible planner-independent interface layer. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA 2014), pp. 639–646. IEEE (2014)Google Scholar
  33. 33.
    Wakamatsu, H., Arai, E., Hirai, S.: Knotting and unknotting manipulation of deformable linear objects. Int. J. Robot. Res. 25(4), 371–395 (2006)CrossRefGoogle Scholar
  34. 34.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)CrossRefGoogle Scholar
  35. 35.
    Yamakawa, Y., Namiki, A., Ishikawa, M.: Dynamic high-speed knotting of a rope by a manipulator. Int. J. Adv. Robot. Syst. 10, 1–12 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DeMaCSUniversity of CalabriaRendeItaly
  2. 2.DIBRISUniversity of GenovaGenovaItaly
  3. 3.University of HuddersfieldHuddersfieldUK

Personalised recommendations