Genotoxicity of Silver Nanoparticles (Ag-NPs) in In Vitro and In Vivo Models

  • Anita K. PatlollaEmail author
  • Paul B. Tchounwou


Genotoxicity represents impairment to a cell’s DNA or RNA by genotoxic vehicle. Materials with at least one dimension of 100 nm or less are called nanomaterials. They vary greatly in size, composition, and structure. A phenomenal rapid growth in the use of metal nanomaterials (NPs) in various consumer products and biomedical applications resulted in increased exposure to humans and the environment. Many of the metal NPs used widely (Ag, Au, Ni, Cu, Co, Ti, Zn, and their corresponding oxides) have shown cytotoxicity and genotoxicity in various animal (mammalian/cell) models. Due to their antimicrobial activity silver nanoparticles (Ag-NPs) are one of the most commonly used metal nanoparticles in consumer, medical, and industrial products. Interactions of metal nanomaterials with cells have shown to cause alterations in the expression of several cellular macromolecules. Overall the major adverse effects include reactive oxygen species (ROS) mediated biomolecular damage to DNA, lipids, and proteins. Although it is likely that the impairment in genotoxicity and oxidative stress biomarkers is associated with Ag-NPs toxicity, it may be from the smaller particles’ proclivity to release silver ions from the surface compared to larger particles. This chapter emphasizes on genotoxicity of Ag-NPs in in vitro and in vivo models.


Silver nanoparticles Genotoxicity DNA Chromosome aberrations In vitro In vivo Reactive oxygen species 



Authors are thankful to National Institutes of Health (Grant # G12MD007581) through the RCMI Center for Environmental Health at Jackson State University for support.

Conflict of Interest Statement: The authors declare no conflict of interest.


  1. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ames BN, Gurney E, Miller JA, Bartsch H (1972) Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci U S A 69(11):3128–3132PubMedPubMedCentralCrossRefGoogle Scholar
  3. Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291(1):65–72PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asharani P, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102PubMedCrossRefPubMedCentralGoogle Scholar
  5. Asharani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 10:65PubMedPubMedCentralCrossRefGoogle Scholar
  6. Asharani P, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5(1):43–54PubMedCrossRefPubMedCentralGoogle Scholar
  7. Awasthi KK, Awasthi A, Verma R, Soni I, Awasthi K, John P (2015) Silver nanoparticles and carbon nanotubes induced DNA damage in mice evaluated by single cell gel electrophoresis. Wiley Online Library, Hoboken, NJ, pp 210–217Google Scholar
  8. Barillet S, Jugan M-L, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carriere M (2010) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 198(3):324–330PubMedCrossRefPubMedCentralGoogle Scholar
  9. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103(13):4930–4934PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen Y-S, Hung Y-C, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4(8):858PubMedPubMedCentralCrossRefGoogle Scholar
  11. Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Štětina R (2008) The comet assay: topical issues. Mutagenesis 23(3):143–151PubMedCrossRefPubMedCentralGoogle Scholar
  12. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (2008) Particle size dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919CrossRefGoogle Scholar
  13. DeMarini DM, Brockman HE, de Serres FJ, Evans HH, Stankowski LF, Hsie AW (1989) Specific-locus mutations induced in eukaryotes (especially mammalian cells) by radiation and chemicals: a perspective. Mutat Res Rev Genet Toxicol 220(1):11–29CrossRefGoogle Scholar
  14. Di Virgilio A, Reigosa M, Arnal P, De Mele MFL (2010) Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater 177(1):711–718PubMedCrossRefPubMedCentralGoogle Scholar
  15. El-Hussein A (2016) Study DNA damage after photodynamic therapy using silver nanoparticles with A549 cell line. J Nanomed Nanotechnol 7(1):1000346Google Scholar
  16. Farah MA, Ali MA, Chen S-M, Li Y, Al-Hemaid FM, Abou-Tarboush FM, Al-Anazi KM, Lee J (2016) Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf B 141:158–169CrossRefGoogle Scholar
  17. FDA (1999) Food and Drug Administration issues final ruling on OTC products containing colloidal silver.
  18. Fenech M (2000) The in vitro micronucleus technique. Mutat Res Fund Mol Mech 455(1):81–95CrossRefGoogle Scholar
  19. Fenech M, Morley AA (1986) Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low dose X-irradiation. Mutat Res Fund Mol Mech 161(2):193–198CrossRefGoogle Scholar
  20. Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) Effects of silver and cerium dioxide micro-and nano-sized particles on Daphnia magna. J Environ Monitor 13(5):1227–1235CrossRefGoogle Scholar
  21. Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, Biswas A, Britton GJ, Cole PA, Johnston BD (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31(1):144–154PubMedCrossRefPubMedCentralGoogle Scholar
  22. Galloway S, Armstrong M, Reuben C, Colman S, Brown B, Cannon C, Bloom A, Nakamura F, Ahmed M, Duk S (1987) Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. Environ Mol Mutagen 10(S10):1–35PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physico-chemical properties of nanomaterials: implication in associated toxic manifestations. Bio Med Res Int 2014:498420Google Scholar
  24. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11PubMedPubMedCentralCrossRefGoogle Scholar
  25. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15(4):897–900CrossRefGoogle Scholar
  26. Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978PubMedCrossRefPubMedCentralGoogle Scholar
  27. Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415PubMedCrossRefPubMedCentralGoogle Scholar
  28. Guo X, Li Y, Yan J, Ingle T, Jones MY, Mei N, Boudreau MD, Cunningham CK, Abbas M, Paredes AM, Zhou T, Moore MM, Howard PC, Chen T (2016) Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology 10(9):1373–1384PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gurr J-R, Wang AS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1):66–73PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hackenberg S, Friehs G, Froelich K, Ginzkey C, Koehler C, Scherzed A, Burghartz M, Hagen R, Kleinsasser N (2010) Intracellular distribution, geno-and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicol Lett 195(1):9–14PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011a) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201(1):27–33PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2011b) Cytotoxic, genotoxic and proinflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro 25(3):657–663PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hackenberg S, Zimmermann FZ, Scherzed A, Friehs G, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2011c) Repetitive exposure to zinc oxide nanoparticles induces DNA damage in human nasal mucosa mini organ cultures. Environ Mol Mutagen 52(7):582–589PubMedCrossRefPubMedCentralGoogle Scholar
  34. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, New YorkCrossRefGoogle Scholar
  35. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6(1):1CrossRefGoogle Scholar
  36. Holgate ST (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J Biomed Nanotechnol 6(1):1–19PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hsin Y, Chen C, Huang S, Shih T, Lai P, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139PubMedCrossRefPubMedCentralGoogle Scholar
  38. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kisin ER, Murray AR, Keane MJ, Shi X-C, Schwegler-Berry D, Gorelik O, Arepalli S, Castranova V, Wallace WE, Kagan VE (2007) Single-walled carbon nanotubes: geno-and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A 70(24):2071–2073PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kovvuru P, Mancilla PE, Shirode AB, Murray TM, Begley TJ, Reliene R (2015) Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues. Nanotoxicology 9(2):162–171PubMedCrossRefPubMedCentralGoogle Scholar
  41. Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, Chen T (2017) Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol 91(1):509–519PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lippmann M (1990) Effects of fiber characteristics on lung deposition, retention, and disease. Environ Health Perspect 88:311PubMedPubMedCentralCrossRefGoogle Scholar
  43. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278PubMedCrossRefPubMedCentralGoogle Scholar
  44. Nair PMG, Park SY, Lee SW, Choi J (2011) Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101(1):31–37PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ordzhonikidze C, Ramaiyya L, Egorova E, Rubanovich A (2009) Genotoxic effects of silver nanoparticles on mice in vivo. Acta Naturae 1(3):99–101PubMedPubMedCentralCrossRefGoogle Scholar
  46. Park SY, Choi JH (2010) Geno-and ecotoxicity evaluation of silver nanoparticles in Fresh water crustacean Daphnia magna. Environ Eng Res 15(1):23–27CrossRefGoogle Scholar
  47. Patlolla AK, Hackett D, Tchounwou PB (2015) Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem 399(1–2):257–268PubMedCrossRefPubMedCentralGoogle Scholar
  48. Petrini JH, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13(9):458–462PubMedCrossRefPubMedCentralGoogle Scholar
  49. Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, Camaioni A, Magrini A, Siracusa G, Bergamaschi A (2011) Low doses of pristine and oxidized singlewall carbon nanotubes affect mammalian embryonic development. ACS Nano 5(6):4624–4633PubMedCrossRefPubMedCentralGoogle Scholar
  50. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51CrossRefGoogle Scholar
  51. Risom L, Moller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res Fund Mol Mech 592(1):119–137CrossRefGoogle Scholar
  52. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25(1):231–241PubMedCrossRefPubMedCentralGoogle Scholar
  53. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23):3891–3914PubMedCrossRefPubMedCentralGoogle Scholar
  54. Song MF, Li YS, Kasai H, Kawai K (2012) Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr 50(3):211–216PubMedPubMedCentralCrossRefGoogle Scholar
  55. Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O’Shaughnessy PT, Grassain VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:5PubMedPubMedCentralCrossRefGoogle Scholar
  56. Stone V, Johnston H, Schins RP (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39(7):613–626PubMedCrossRefPubMedCentralGoogle Scholar
  57. Suliman Y, Omar A, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel SH (2015) Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol 30(2):149–160CrossRefGoogle Scholar
  58. Wang X, Li T, Su X, Li J, Li W, Gan J, Wu T, Kong L, Zhang T, Tang M, Xue Y (2019) Genotoxic effects of silver nanoparticles with/without coating in human liver HepG2 cells and in mice. J Appl Toxicol 39(6):908–918PubMedCrossRefPubMedCentralGoogle Scholar
  59. Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harbor Perspect Biol 2(10):a000562CrossRefGoogle Scholar
  60. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131PubMedCrossRefPubMedCentralGoogle Scholar
  61. Wise JP, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng AK, Aboueissa A-M, Mitani H (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.CSET, Department of BiologyJackson State UniversityJacksonUSA

Personalised recommendations