Advertisement

Additive Manufacturing and Nanotherapeutics: Present Status and Future Perspectives in Wound Healing

  • Parneet Kaur Deol
  • Amoljit Singh Gill
  • Sushant Prajapati
  • Indu Pal Kaur
Chapter

Abstract

In the past decades, additive manufacturing had emerged as a cost-effective and clinically acceptable means for fabrication of diverse and biologically compatible materials of complex geometrical structure. This technology can use an array of materials (mainly biopolymers) as carriers, which can print the incorporated cells, drug, or even nanoparticles in desired shape with high accuracy and precision.

In this chapter, we have highlighted the current status and the future scope of fabricating the tailor-made nanotherapeutics and additive manufacturing techniques for effective wound healing. Current market demand of the tailor-made wound dressings/implants has contributed positively towards the use of additive manufacturing in their fabrication as it can address specific problems associated with various phases (namely hemostasis, inflammation, proliferation, and remodeling) of wound healing phenomenon. Additive manufacturing fabricated materials can either work as carriers for nanostructured therapeutic agents like silver nanoparticles, nanoparticle loaded antibiotics and antioxidants or they can print biomaterials (with or without drug) in complex nanoporous scaffolds.

Keywords

Nanotherapeutics Additive manufacturing Wound healing Nanomaterials 3D scaffolds 

References

  1. Ahangar P, Akoury E, Ramirez Garcia Luna AS, Nour A, Weber MH, Rosenzweig DH (2018) Nanoporous 3D-printed scaffolds for local doxorubicin delivery in bone metastases secondary to prostate cancer. Materials (Basel) 11:1485CrossRefGoogle Scholar
  2. Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203PubMedCrossRefGoogle Scholar
  3. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, Ameer GA, He TC, Reid RR (2017) 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis 4:185–195PubMedPubMedCentralCrossRefGoogle Scholar
  4. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923PubMedCrossRefPubMedCentralGoogle Scholar
  5. Byambaa B, Annabi N, Yue K, de Santiago GT, Alvarez MM, Jia W, Kazemzadeh-Narbat M, Shin SR, Tamayol A, Khademhosseini A (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6:1700015–1700030CrossRefGoogle Scholar
  6. Chaudhary C, Garg T (2015) Scaffolds: a novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst 32:277–321PubMedCrossRefGoogle Scholar
  7. Chen WY, Chang HY, Lu JK, Huang YC, Harroun SG, Tseng YT, Li YJ, Huang CC, Chang HT (2015) Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv Funct Mater 25:7189–7199CrossRefGoogle Scholar
  8. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine 12:1335–1352PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP (2013) Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 34:2194–2201PubMedCrossRefGoogle Scholar
  10. Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5:137–145PubMedCrossRefGoogle Scholar
  11. Chu Y, Yu D, Wang P, Xu J, Li D, Ding M (2010) Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen 18:499–505CrossRefGoogle Scholar
  12. Das S, Baker AB (2016) Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol 4:82PubMedPubMedCentralCrossRefGoogle Scholar
  13. Das S, Majid M, Baker AB (2016a) Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater 42:56–65PubMedCrossRefGoogle Scholar
  14. Das S, Monteforte AJ, Singh G, Majid M, Sherman MB, Dunn AK, Baker AB (2016b) Syndecan-4 enhances therapeutic angiogenesis after hind limb ischemia in mice with type 2 diabetes. Adv Healthc Mater 5:1008–1013PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662CrossRefGoogle Scholar
  16. Duan B, Wang M, Zhou WY, Cheung WL, Yang Z, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6:4495–4505PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fife CE, Carter MJ (2012) Wound care outcomes and associated cost among patients treated in US outpatient wound centers: data from the US wound registry. Wounds 24:10–17PubMedPubMedCentralGoogle Scholar
  18. Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 1:441–449PubMedPubMedCentralCrossRefGoogle Scholar
  19. Garay-Jimenez JC, Gergeres D, Young A, Lim DV, Turos E (2009) Physical properties and biological activity of poly(butyl acrylate-styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants. Nanomedicine 5:443–451PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gill AS, Deol PK, Kaur IP (2019) An update on the use of alginate in additive biofabrication techniques. Curr Pharm Des 25:1249–1264PubMedCrossRefGoogle Scholar
  21. Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferoni MC, Ozer O (2012) Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 7:1841–1850PubMedPubMedCentralCrossRefGoogle Scholar
  22. Graham C (2005) The role of silver in wound healing. Br J Nurs 14:S22, S24, S26 passimPubMedCrossRefGoogle Scholar
  23. Gu H, Ho P, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263CrossRefGoogle Scholar
  24. Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hafner A, Lovrić J, Lakoš GP, Pepić I (2014) Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 9:1005PubMedPubMedCentralGoogle Scholar
  26. Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci 3:163–175PubMedPubMedCentralCrossRefGoogle Scholar
  27. Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34:599–610PubMedPubMedCentralCrossRefGoogle Scholar
  28. He P, Zhao J, Zhang J, Li B, Gou Z, Gou M, Li X (2018) Bioprinting of skin constructs for wound healing. Burns Trauma 6:5PubMedPubMedCentralCrossRefGoogle Scholar
  29. Holmes B, Bulusu K, Plesniak M, Zhang LG (2016) A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27:064001–064028PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp J 19:353–364CrossRefGoogle Scholar
  31. Jacob DS, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A (2006) Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chem Mater 18:3162–3168CrossRefGoogle Scholar
  32. Jessop ZM, Al-Sabah A, Gardiner MD, Combellack E, Hawkins K, Whitaker IS (2017) 3D bioprinting for reconstructive surgery: principles, applications and challenges. J Plast Reconstr Aesthet Surg 70:1155–1170PubMedCrossRefGoogle Scholar
  33. Ji HW, Sun HJ, Qu XG (2016) Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev 105:176–189PubMedCrossRefGoogle Scholar
  34. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II Renewed interest for silver. Burns 26:131–138PubMedCrossRefGoogle Scholar
  35. Kuchler S, Radowski MR, Blaschke T, Dathe M, Plendl J, Haag R, Schäfer-Korting M, Kramer KD (2009) Nanoparticles for skin penetration enhancement—a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm 71:243–250PubMedCrossRefGoogle Scholar
  36. Kuchler S, Herrmann W, Panek-Minkin G, Blaschke T, Zoschke C, Kramer KD, Bittl R, Schäfer-Korting M (2010a) SLN for topical application in skin diseases—characterization of drug-carrier and carrier-target interactions. Int J Pharm 390:225–233PubMedCrossRefGoogle Scholar
  37. Kuchler S, Wolf NB, Heilmann S, Weindl G, Helfmann J, Yahya MM, Stein C, Schäfer-Korting M (2010b) 3D-wound healing model: influence of morphine and solid lipid nanoparticles. J Biotechnol 148:24–30PubMedCrossRefGoogle Scholar
  38. Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, Wang TW (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10:4156–4166PubMedCrossRefGoogle Scholar
  39. Lansdown AB (2002) Silver. I: its antibacterial properties and mechanism of action. J Wound Care 11:125–130PubMedCrossRefGoogle Scholar
  40. Leu JG, Chen SA, Chen HM, Wu WM, Hung CF, Yao YD (2012) The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and alpha-lipoic acid. Nanomedicine 8:767–775PubMedCrossRefPubMedCentralGoogle Scholar
  41. Liu SB, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980PubMedCrossRefPubMedCentralGoogle Scholar
  42. Maas M (2016) Carbon nanomaterials as antibacterial colloids. Mater Sci Eng C 9:617Google Scholar
  43. Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34:422–434PubMedCrossRefGoogle Scholar
  44. Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812CrossRefGoogle Scholar
  45. Mota C, Puppi D, Chiellini F, Chiellini E (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9:174–190PubMedCrossRefGoogle Scholar
  46. Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436PubMedPubMedCentralGoogle Scholar
  47. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95CrossRefGoogle Scholar
  48. Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Ghodsi MA, Davaran S, Montaseri A (2018) Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol 46:691–705PubMedCrossRefGoogle Scholar
  49. Rakhmetova AA, Alekseeva TP, Bogoslovskaya OA, Leipunskii IO, Ol’khovskaya IP, Zhigach AN (2010) Wound-healing properties of copper nanoparticles as a function of physicochemical parameters. Nanotechnol Russ 5:271–276CrossRefGoogle Scholar
  50. Randeria PS, Seeger MA, Wang XQ, Wilson H, Shipp D, Mirkin CA, Paller AS (2015) siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A 112:5573–5578PubMedPubMedCentralCrossRefGoogle Scholar
  51. Rani S, Ritter T (2016) The exosome: a naturally secreted nanoparticle and its application to wound healing. Adv Mater 28:5542–5552PubMedCrossRefGoogle Scholar
  52. Rees A, Powell LC, Chinga-Carrasco G, Gethin DT, Syverud K, Hill KE Thomas DW (2015) 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int 2015:925757PubMedPubMedCentralCrossRefGoogle Scholar
  53. Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3:20–31PubMedCrossRefGoogle Scholar
  54. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771PubMedPubMedCentralCrossRefGoogle Scholar
  55. Singh D, Singh D, Han S (2016) 3D printing of scaffold for cells delivery: advances in skin tissue engineering. Polymers 8:19PubMedCentralCrossRefPubMedGoogle Scholar
  56. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802PubMedPubMedCentralCrossRefGoogle Scholar
  57. Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, Lim DV (2007) Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17:53–56PubMedPubMedCentralCrossRefGoogle Scholar
  58. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH (2018) 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 132:296–332PubMedCrossRefGoogle Scholar
  59. Wasiak J, Cleland H, Campbell F Spinks A (2013) Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev (3):CD002106Google Scholar
  60. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA (2008) An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 372:139–144PubMedCrossRefGoogle Scholar
  61. Wong KK, Cheung SO, Huang L, Niu J, Tao C, Ho CM, Che CM, Tam PK (2009) Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem 4:1129–1135PubMedCrossRefGoogle Scholar
  62. World Health Organization (2016) Golbal report on diabetesGoogle Scholar
  63. Xie ZW, Paras CB, Weng H, Punnakitikashem P, Su LC, Vu K, Tang LP, Yang J, Nguyen KT (2013) Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 9:9351–9359PubMedCrossRefGoogle Scholar
  64. Xu C, Molino BZ, Wang X, Cheng F, Xu W, Molino P, Bacher M, Su D, Rosenau T, Willfo S, Wallace G (2018) 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J Mater Chem B 6:7066–7075CrossRefGoogle Scholar
  65. Zhou EH, Watson C, Pizzo R, Cohen J, Dang Q, Ferreira de Barros PM, Park CY, Chen C, Brain JD, Butler JP, Ruberti JW et al (2014) Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay. Nanomedicine 9:2803–2815PubMedCrossRefGoogle Scholar
  66. Ziv-Polat O, Topaz M, Brosh T, Margel S (2010) Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 31:741–747PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Parneet Kaur Deol
    • 1
  • Amoljit Singh Gill
    • 2
  • Sushant Prajapati
    • 3
  • Indu Pal Kaur
    • 4
  1. 1.Department of PharmaceuticsG.H.G. Khalsa College of Pharmacy, Gurusar SadharLudhianaIndia
  2. 2.Department of Mechanical EngineeringPunjab Technical UniversityKapurthalaIndia
  3. 3.Department of Biotechnology and Medical EngineeringNITRourkelaIndia
  4. 4.Department of PharmaceuticsUniversity Institute of Pharmaceutical Sciences, Panjab UniversityChandigarhIndia

Personalised recommendations