Disease Management in the Forest Plantations in Chile

  • Rodrigo AhumadaEmail author
  • Alessandro Rotella


Commercial plantations in Chile are composed mainly of P. radiata, Eucalyptus globulus, and E. nitens, which together represent 94% of the total plantations. Pinus radiata constitutes the largest surface area of plantations, including about 1.4 million ha (58%), while Eucalyptus spp. are about 860,000 ha (36%) of the approximately 2.4 million ha of commercial plantations in the country. Most of the commercial plantations in Chile belong to private industry. Currently, the most important diseases in P. radiata are caused by four pathogens, while in Eucalyptus spp. there are not an important disease present at this time. The pathogens pose tremendous challenges for forestry since they affect the three main parts of the trees, namely the root systems and collars in the case of Fusarium circinatum in nurseries, the stems by Neonectria fuckeliana, and the foliage by Phytophthora pinifolia and Dothistroma septosporum. For these diseases, a strategy has been developed based on surveillance for early detection, biology of the damage agent, control of agents, and improvements in the quality of the plants (selection for tolerance). Due to different constraints (e.g., FSC, environmental and social risks), it is not easy to apply a curative treatment for diseases damage, and consequently various approaches have been tested to develop an integrated management program using different tools, according on the characteristics of each damage agent. Preliminary results have shown that it will be possible to reduce the damage caused by diseases in both nurseries and plantations, using a combination of management strategies.


Forest diseases Pinus spp. Eucalyptus spp. Pathogens Forest health 


  1. Ahumada R (2003) Pathogens in commercial Eucalyptus plantations in Chile, with special reference to Mycosphaerella and Botryosphaeria species. Thesis, University of Pretoria, PretoriaGoogle Scholar
  2. Ahumada R, Rotella A, Slippers B et al (2013) Pathogenicity and sporulation of Phytophthora pinifolia on Pinus radiata in Chile. Aust Plant Pathol 42:413–420CrossRefGoogle Scholar
  3. Alzamora RM, Hauer P, Peredo H (2004) Evaluation of commercial volume losses to Pinus radiata caused by Dothistroma septospora under varying forest management and chemical control conditions in the province of Valdivia. Bosque 25:15–27CrossRefGoogle Scholar
  4. Burgess T, Wingfield MJ (2001) Exotic pine forestry in the southern hemisphere: a brief history of establishment and quarantine practices. South Afr For J 192:79–84Google Scholar
  5. Bustamante J (2000) Revisión Bibliográfica del Hongo Dothistroma septospora en Chile. Universidad Austral de Chile, ValdiviaGoogle Scholar
  6. Butin H, Peredo H (1986) Hongos parásitos coníferas de América del Sur con especial referencia a Chile. Biblioteca Micológica. Editorial Cramer, StuttgartGoogle Scholar
  7. Coetzee MPA, Wingfield BD, Bloomer P et al (2003) Molecular identification and phylogeny of Armillaria isolates from South America and Indo-Malaysia. Mycologia 95:285–293CrossRefGoogle Scholar
  8. Contreras R (1988) Epidemiología de Dothistroma pini, en los tres primeros años de una plantación de Pinus radiata. Thesis, Universidad Austral de Chile, ValdiviaGoogle Scholar
  9. Dubin HJ (1965) Dothistroma pini Tizón de la aguja de Pinus radiata D. Don en Chile. Facultad de Ing. Forestal, Universidad Austral de Chile. Publicaciones Científicas, ValdiviaGoogle Scholar
  10. Durán A, Gryzenhout M, Slippers B et al (2008) Phytophthora pinifolia sp. nov., associated with a serious needle disease of Pinus radiata in Chile. Plant Pathol 57:715–727CrossRefGoogle Scholar
  11. Durán A, Gryzenhout M, Drenth A et al (2010) AFLP analysis reveals a clonal population of Phytophthora pinifolia in Chile. Fungal Biol 114:746–752CrossRefGoogle Scholar
  12. Elmudesi S (1992) Evaluación biológica de tratamientos químicos para controlar el daño causado por Dothistroma septospora al cabo de 5 años en una plantación de Pinus radiata en Valdivia. Tesis Ingeniería Forestal, Universidad Austral de Chile, Valdivia, pp. 96Google Scholar
  13. Evans HC (1984) The genus Mycosphaerella and its anamophs Cercoseptoria, Dothistroma, and Lecanosticta on pines. Mycol Pap 153:1–102Google Scholar
  14. Fisher MC, Henk DA, Briggs CJ et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194CrossRefGoogle Scholar
  15. Gibson IAS (1979) Diseases of forest trees widely planted as exotics in the tropics and southern hemisphere. Commonwealth Mycological Institute, Kew, SurreyGoogle Scholar
  16. Gibson IAS, Kennedy P, Dedan JK (1966) Further observations in Kenya on a foliage disease of Pines caused by Dothistroma pini Hulbary. II. Investigations into fungicidal control of the disease. Commonw For Rev 45:67–76Google Scholar
  17. Gonzalez G (1997) Estudio Epidemiológico de Enfermedades Foliares en Eucalipto en Chile. Informe de Avance 2. Universidad de Concepción, ConcepciónGoogle Scholar
  18. González G (2007) Fusarium circinatum Nirenberg and O’Donnell: Conocimiento del patógeno y establecimiento de bases para su control en Pinus radiata. Universidad de Concepción, ConcepciónGoogle Scholar
  19. González G, Parra P (1994) Enfermedades foliares en un ensayo de procedencias y familias de Eucalyptus globulus ssp. globulus, Cauquenes VII Región, Chile. Acta Simposio: Los Eucalyptus en el desarrollo forestal de Chile, Santiago de Chile. pp 321–328Google Scholar
  20. Hauer P (2000) Estimación de las pérdidas en volumen comercial ocasionadas por Dothistroma septospora. Thesis, Universidad Austral de ChileGoogle Scholar
  21. INFOR (2011) Estadísticas Forestales Chilenas 2009. Santiago, Instituto Forestal (INFOR), Ministerio de Agricultura. Chile. Available from:
  22. Lowy M (1995) Shredding Chile’s forests. Harvesting South America. Multinatl Monit 16(11)Google Scholar
  23. Mathyus G, Smith IM (1984) Regional and global plant quarantine strategies with special references to developments within EPPO. EPPO Bull 14:83–95CrossRefGoogle Scholar
  24. Mead DJ (2013) Sustainable management of Pinus radiata plantations. FAO Forestry Paper 170. FAO, RomeGoogle Scholar
  25. MINSAL (2010) Reglamento dobre aplicaciones aéreas de plaguicidas. Decreto N° 5/10 Publicado en el Diario Oficiall de 25.09.10. Ministerio de Salud, República de ChileGoogle Scholar
  26. Morales E (2002) Changing Ownership and Management of State Forest Plantations: Chile. International Institute for Environment and Development (IIED), Cape TownGoogle Scholar
  27. Morales R (2009) Detection of Neonectria fuckeliana in Chile associated to stem cankers and malformation in Pinus radiata plantations. Bosque 30:106–110CrossRefGoogle Scholar
  28. Morales R (2013) Ciclo biológico y aspectos epidemiológicos de Neonectria fuckeliana en plantaciones de Pinus radiata. Estrategias para el control de la enfermedad. Resultados Finales Proyecto Fondo-SAG C6–110–NC–13. Universidad Austral de Chile, ValdiviaGoogle Scholar
  29. Mujica F, Vergara C (1980) Flora fungosa chilena, 2nd edn. Publicaciones Científicas Agrarias (5), Universidad de Chile, Santiago de ChileGoogle Scholar
  30. Muñoz M (1999) Hongos Foliares de Eucalyptus. Memoria de Título. Universidad de Concepción, ConcepciónGoogle Scholar
  31. Osorio M (1977) Epifitia en Plantaciones Chilenas de Pino Insigne (Pinus radiata D. Don) causada por Diplodia pinea (Desm.) Kickx. In: Actas de las VIII Jornadas y Primer Congreso Argentino de Micología. Córdova, 4–8 de OctubreGoogle Scholar
  32. Osorio M, Sobarzo G (1986) Tipificación y control in vitro de Diplodia pinea (Desm.) Kickx. Prospección Nacional Sanitaria Forestal CONAF/UACH. Informe de Convenio No. 106Google Scholar
  33. Peredo H (1990) Hainesia litri, Nuevo patógeno foliar de Eucalyptus en Chile. Bosques 8(1):23–27Google Scholar
  34. Pérez E (1973) Que papel juega Dothistroma pini Hulbary sobre el pino insigne según nuestras experiencias hasta hoy en el Sur de Chile?. Thesis, Universidad Austral de Chile, ValdiviaGoogle Scholar
  35. Raga F (2009) The Chilean Forestry Sector and associated risks. Timber Corporation (CORMA). Trébol 51:10–19Google Scholar
  36. SAG (2003) Servicio Agrícola y Ganadero. Plagas cuarentenarias presentes. Fusarium circinatum.
  37. SAG (2011) Servicio Agrícola y Ganadero. Plagas cuarentenarias ausentesGoogle Scholar
  38. SAG (2013) Servicio Agrícola y Ganadero. Listado de plagas cuarentenariasGoogle Scholar
  39. Santini A, Ghelardini L, De Pace C et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250CrossRefGoogle Scholar
  40. Schrader G, Unger JG (2003) Plant quarantine as a measure against invasive alien species: the framework of the International Plant Protection Convention and the plant health regulations in the European Union. Biol Invasions 5:357–364CrossRefGoogle Scholar
  41. Sharma S, Thakur M (2007) Role of plant Quarantine in the management of pest organisms—a review. Agric Rev 28:235–244Google Scholar
  42. Stenlid J, Oliva J, Boberg JB, Hopkins A (2011) Emerging diseases in european forest ecosystems and responses in society. Forests 2:486–504CrossRefGoogle Scholar
  43. Swart WJ, PS K–D, Wingfield MJ (1985) Sphaeropsis sapinea, with special reference to its occurrence in Pinus spp. in South Africa. South Afr For J 35:1–8Google Scholar
  44. Thomas JE, Lindberg GD (1954) A needle disease of pines caused by Dothistroma pini. Phytopathology 44:333Google Scholar
  45. Tkacz B (2002) Pest risks associated with importing wood to the United States. Can J Plant Pathol 24:111–116CrossRefGoogle Scholar
  46. Wingfield MJ, Crous PW, Peredo H (1995) A preliminary, annotated list of foliar pathogens of Eucalyptus spp. in Chile. South Afr For J 173:53–57Google Scholar
  47. Wingfield MJ, Slippers B, Roux J et al (2001) Worldwide movement of exotic forest fungi, especially in the tropics and the southern hemisphere. Bioscience 5:134–140CrossRefGoogle Scholar
  48. Wingfield MJ, Jacobs A, Coutinho TA et al (2002) First report of the pitch canker fungus, Fusarium circinatum, on pines in Chile. Plant Pathol 51:397CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bioforest S.A.ConcepciónChile

Personalised recommendations