Advertisement

Assessing the Performances of Soccer Players

  • Jesse DavisEmail author
  • Lotte Bransen
  • Tom Decroos
  • Pieter Robberechts
  • Jan Van Haaren
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1028)

Abstract

A key question within sports analytics is how to analyze match data in order to objectively assess a player’s performance during a match. This paper summarizes our recent attempts to address this question for soccer. First, we look at how to assign a value to each on-the-ball action a soccer player performs during a match. Second, we explore how these values depend on the level of mental pressure that the player experienced when performing the action. We conclude by briefly highlighting some potential applications of this work.

Keywords

Soccer analytics Rating actions in soccer Performance under mental pressure 

Notes

Acknowledgements

Jesse Davis is partially supported by the EU Interreg VA project Nano4Sports and the KU Leuven Research Fund (C14/17/07, C32/17/036). Tom Decroos is supported by Research Foundation-Flanders (FWO-Vlaanderen). Pieter Robberechts is supported by the EU Interreg VA project Nano4Sports.

References

  1. 1.
    Bransen, L., Robberechts, P., Van Haaren, J., Davis, J.: Choke or shine? Quantifying soccer players’ abilities to perform under mental pressure. In: MIT Sloan Sports Analytics Conference (2019)Google Scholar
  2. 2.
    Bransen, L., Van Haaren, J., van de Velden, M.: Measuring soccer players’ contributions to chance creation by valuing their passes. J. Quant. Anal. Sport. 15, 97–116 (2019)CrossRefGoogle Scholar
  3. 3.
    Brefeld, U., Lasek, J., Mair, S.: Probabilistic movement models and zones of control. Mach. Learn. 108(1), 127–147 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cervone, D., D’Amour, A., Bornn, L., Goldsberry, K.: POINTWISE: predicting points and valuing decisions in real time with NBA optical tracking data. In: MIT Sloan Sports Analytics Conference (2014)Google Scholar
  5. 5.
    Decroos, T., Dzyuba, V., Van Haaren, J., Davis, J.: Predicting soccer highlights from spatio-temporal match event streams. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 1302–1308 (2017)Google Scholar
  6. 6.
    Decroos, T., Van Haaren, J., Dzyuba, V., Davis, J.: STARSS: a spatio-temporal action rating system for soccer. In: Proceedings of the Fourth Workshop on Machine Learning and Data Mining for Sports Analytics, pp. 11–20 (2017)Google Scholar
  7. 7.
    Decroos, T., Bransen, L., Van Haaren, J., Davis, J.: Actions speak louder than goals: valuing player actions in soccer. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1851–1861 (2019)Google Scholar
  8. 8.
    Decroos, T., Van Haaren, J., Davis, J.: Automatic discovery of tactics in spatio-temporal soccer match data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 223–232 (2018)Google Scholar
  9. 9.
    Goldner, K.: A Markov model of football: using stochastic processes to model a football drive. J. Quant. Anal. Sport. 8(1), (2012)Google Scholar
  10. 10.
    Jaspers, A., Op De Beéck, T., Brink, M.S., Frencken, W.G., Staes, F., Davis, J.J., Helsen, W.F.: Relationships between the external and internal training load in professional soccer: what can we learn from machine learning? Int. J. Sport. Physiol. Perform. 13(5), 625–630 (2018)Google Scholar
  11. 11.
    Jaspers, A., Op De Beéck, T., Brink, M.S., Frencken, W.G., Staes, F., Davis, J., Helsen, W.: Predicting future perceived wellness in professional soccer: the role of preceding load and wellness. Int. J. Sport. Physiol. Perform. 14(8), 1074–1080 (2019)CrossRefGoogle Scholar
  12. 12.
    Keane, E., Desaulniers, P., Bornn, L., Javan, M.: Data-driven lowlight and highlight reel creation based on explainable temporal game models. In: MIT Sloan Sports Analytics Conference (2019)Google Scholar
  13. 13.
    Knobbe, A.J., Orie, J., Hofman, N., van der Burgh, B., Cachucho, R.: Sports analytics for professional speed skating. Data Min. Knowl. Discov. 31(6), 1872–1902 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Link, D., Lang, S., Seidenschwarz, P.: Real time quantification of dangerousity in football using spatiotemporal tracking data. PLoS ONE 11(12), e0168768 (2016)CrossRefGoogle Scholar
  15. 15.
    Liu, G., Schulte, O.: Deep reinforcement learning in ice hockey for context-aware player evaluation. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 3442–3448 (2018)Google Scholar
  16. 16.
    Lucey, P., Oliver, D., Carr, P., Roth, J., Matthews, I.: Assessing team strategy using spatiotemporal data. In: Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining, pp. 1366–1374 (2013)Google Scholar
  17. 17.
    Lucey, P, Monfort, M., Bialkowski, A., Carr, P., Matthews, I.: Quality vs quantity: improved shot prediction in soccer using strategic features from spatiotemporal data. In: MIT Sloan Sports Analytics Conference (2015)Google Scholar
  18. 18.
    Miller, A.C., Bornn, L., Adams, R.P., Goldsberry, K.: Factorized point process intensities: a spatial analysis of professional basketball. In: Proceedings of the 31th International Conference on Machine Learning, pp. 235–243 (2014)Google Scholar
  19. 19.
    Op De Beéck, T., Meert, W., Schütte, K., Vanwanseele, B., Davis, J.: Fatigue prediction in outdoor runners via machine learning and sensor fusion. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 606–615 (2018)Google Scholar
  20. 20.
    Pappalardo, L., Cintia, P., Ferragina, P., Massucco, E., Pedreschi, D., Giannotti, F.: PlayeRank: multi-dimensional and role-aware rating of soccer player performance. CoRR abs/1802.04987 (2018)Google Scholar
  21. 21.
    Pelechrinis, K., Papalexakis, E.: The anatomy of american football: evidence from 7 years of NFL game data. PLoS ONE 11(12), e0168716 (2018)CrossRefGoogle Scholar
  22. 22.
    Rein, R., Raabe, D., Perl, J., Memmert, D.: Evaluation of changes in space control due to passing behavior in elite soccer using Voronoi-cells. In: Proceedings of the 10th International Symposium on Computer Science in Sports, pp. 179–183 (2016)Google Scholar
  23. 23.
    Robberechts, P., Van Haaren, J., Davis, J.: Who will win it? An in-game win probability model for football. arXiv:1906.05029 (2019)
  24. 24.
    Smyth, B., Cunningham, P.: Marathon race planning: a case-based reasoning approach. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 5364–5368 (2018)Google Scholar
  25. 25.
    Spearman, W.: Beyond expected goals. In: MIT Sloan Sports Analytics Conference (2018)Google Scholar
  26. 26.
    van Bommel, M., Bornn, L.: Adjusting for scorekeeper bias in NBA box scores. Data Min. Knowl. Discov. 31(6), 1622–1642 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Van Haaren, J., Dzyuba, V., Hannosset, S., Davis, J.: Automatically discovering offensive patterns in soccer match data. In: Advances in Intelligent Data Analysis XIV, pp. 286–297 (2015)Google Scholar
  28. 28.
    Van Haaren, J., Ben Shitrit, H., Davis, J., Fua, P.: Analyzing volleyball match data from the 2014 world championships using machine learning techniques. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp. 627–634 (2016)Google Scholar
  29. 29.
    Van Haaren, J., Hannosset, S., Davis, J.: Strategy discovery in professional soccer match data. In: Proceedings of the KDD-16 Workshop on Large-Scale Sports Analytics, pp. 1–4 (2016)Google Scholar
  30. 30.
    Vandewiele, G., Geurkink, Y., Lievens, M., Ongenae, F., Turck, F.D., Boone, J.: Enabling training personalization by predicting the sessioon rate of perceived exertion. In: Proceedings of the Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2018 Workshop (2017)Google Scholar
  31. 31.
    Wei, X., Lucey, P., Morgan, S., Sridharan, S.: Forecasting the next shot location in tennis using fine-grained spatiotemporal tracking data. IEEE Trans. Knowl. Data Eng. 28(11), 2988–2997 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jesse Davis
    • 1
    Email author
  • Lotte Bransen
    • 2
  • Tom Decroos
    • 1
  • Pieter Robberechts
    • 1
  • Jan Van Haaren
    • 2
  1. 1.Department of Computer ScienceKU LeuvenLeuvenBelgium
  2. 2.SciSportsAmersfoortThe Netherlands

Personalised recommendations