Advertisement

Appearance-Based Loop Closure Detection with Scale-Restrictive Visual Features

  • Konstantinos A. TsintotasEmail author
  • Panagiotis Giannis
  • Loukas Bampis
  • Antonios Gasteratos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11754)

Abstract

In this paper, an appearance-based loop closure detection pipeline for autonomous robots is presented. Our method uses scale-restrictive visual features for image representation with a view to reduce the computational cost. In order to achieve this, a training process is performed, where a feature matching technique indicates the features’ repeatability with respect to scale. Votes are distributed into the database through a nearest neighbor method, while a binomial probability function is responsible for the selection of the most suitable loop closing pair. Subsequently, a geometrical consistency check on the chosen pair follows. The method is subjected into an extensive evaluation via a variety of outdoor, publicly-available datasets revealing high recall rates for 100\(\%\) precision, as compared against its baseline version, as well as, other state-of-the-art approaches.

Keywords

Localization Mapping Visual-based navigation Mobile robots 

References

  1. 1.
    Angeli, A., Filliat, D., Doncieux, S., Meyer, J.A.: A fast and incremental method for loop-closure detection using bags of visual words. IEEE Trans. Robot. 1027–1037 (2008)CrossRefGoogle Scholar
  2. 2.
    Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)Google Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463. ACM Press, New York (1999)Google Scholar
  4. 4.
    Balaska, V., Bampis, L., Gasteratos, A.: Graph-based semantic segmentation. In: Proceedings of International Conference on Robotics in Alpe-Adria Danube Region, pp. 572–579 (2018)Google Scholar
  5. 5.
    Bampis, L., Amanatiadis, A., Gasteratos, A.: Encoding the description of image sequences: a two-layered pipeline for loop closure detection. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4530–4536 (2016)Google Scholar
  6. 6.
    Bampis, L., Amanatiadis, A., Gasteratos, A.: Fast loop-closure detection using visual-word-vectors from image sequences. Int. J. Robot. Res. 37(1), 62–82 (2018)CrossRefGoogle Scholar
  7. 7.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded-up robust features. In: Proceedings of European Conference on Computer Vision, pp. 404–417 (2006)CrossRefGoogle Scholar
  8. 8.
    Blanco, J.L., Moreno, F.A., Gonzalez, J.: A collection of outdoor robotic datasets with centimeter-accuracy ground truth. Auton. Robots 27(4), 327 (2009)CrossRefGoogle Scholar
  9. 9.
    Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 14(3), 462–467 (1968)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cieslewski, T., Stumm, E., Gawel, A., Bosse, M., Lynen, S., Siegwart, R.: Point cloud descriptors for place recognition using sparse visual information. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4830–4836 (2016)Google Scholar
  11. 11.
    Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. 30(9), 1100–1123 (2011)CrossRefGoogle Scholar
  12. 12.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)CrossRefGoogle Scholar
  13. 13.
    Erkent, Ö., Bozma, H.I.: Bubble space and place representation in topological maps. Int. J. Robot. Res. 32(6), 672–689 (2013)CrossRefGoogle Scholar
  14. 14.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)CrossRefGoogle Scholar
  16. 16.
    Garcia-Fidalgo, E., Ortiz, A.: iBoW-LCD: an appearance-based loop-closure detection approach using incremental bags of binary words. IEEE Robot. Autom. Lett. 3(4), 3051–3057 (2018)CrossRefGoogle Scholar
  17. 17.
    Gehrig, M., Stumm, E., Hinzmann, T., Siegwart, R.: Visual place recognition with probabilistic voting. In: Proceedings of IEEE International Conference on Robotics and Automation, Singapore, pp. 3192–3199, May 2017Google Scholar
  18. 18.
    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  19. 19.
    Khan, S., Wollherr, D.: IBuILD: incremental bag of binary words for appearance based loop closure detection. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 5441–5447 (2015)Google Scholar
  20. 20.
    Kostavelis, I., Gasteratos, A.: Semantic mapping for mobile robotics tasks: a survey. Robot. Auton. Syst. 66, 86–103 (2015)CrossRefGoogle Scholar
  21. 21.
    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2548–2555 (2011)Google Scholar
  22. 22.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  23. 23.
    Lynen, S., Bosse, M., Furgale, P.T., Siegwart, R.: Placeless place-recognition. In: Proceedings of IEEE International Conference on 3D Vision, pp. 303–310 (2014)Google Scholar
  24. 24.
    Maffra, F., Chen, Z., Chli, M.: Tolerant place recognition combining 2D and 3D information for UAV navigation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2542–2549 (2018)Google Scholar
  25. 25.
    Milford, M.J., Wyeth, G.F.: SeqSLAM: visual route-based navigation for sunny summer days and stormy winter nights. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1643–1649 (2012)Google Scholar
  26. 26.
    Mur-Artal, R., Tardós, J.D.: Fast relocalisation and loop closing in keyframe-based SLAM. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 846–853 (2014)Google Scholar
  27. 27.
    Newman, P., Cole, D., Ho, K.: Outdoor SLAM using visual appearance and laser ranging. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1180–1187 (2006)Google Scholar
  28. 28.
    Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW: unsupervised fine-tuning with hard examples. In: Proceedings of European Conference on Computer Vision, pp. 3–20 (2016)CrossRefGoogle Scholar
  29. 29.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2564–2571, November 2011Google Scholar
  30. 30.
    Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos, p. 1470 (2003)Google Scholar
  31. 31.
    Sünderhauf, N., Dayoub, F., Shirazi, S., Upcroft, B., Milford, M.: On the performance of convnet features for place recognition. arXiv preprint arXiv:1501.04158 (2015)
  32. 32.
    Thrun, S., Leonard, J.J.: Simultaneous localization and mapping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 871–889. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Tsintotas, K.A., Bampis, L., Gasteratos, A.: Assigning visual words to places for loop closure detection. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1–7 (2018)Google Scholar
  34. 34.
    Tsintotas, K.A., Bampis, L., Gasteratos, A.: DOSeqSLAM: dynamic on-line sequence based loop closure detection algorithm for SLAM. In: Proceedings of IEEE International Conference on Imaging Systems and Techniques, pp. 1–6 (2018)Google Scholar
  35. 35.
    Tsintotas, K.A., Bampis, L., Gasteratos, A.: Probabilistic appearance-based place recognition through bag of tracked words. IEEE Robot. Autom. Lett. 4(2), 1737–1744 (2019)CrossRefGoogle Scholar
  36. 36.
    Tsintotas, K.A., Bampis, L., Rallis, S., Gasteratos, A.: SeqSLAM with bag of visual words for appearance based loop closure detection. In: Proceedings of International Conference on Robotics in Alpe-Adria Danube Region, pp. 580–587 (2018)Google Scholar
  37. 37.
    Zhang, G., Lilly, M.J., Vela, P.A.: Learning binary features online from motion dynamics for incremental loop-closure detection and place recognition. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 765–772. IEEE (2016)Google Scholar
  38. 38.
    Zhang, H.: BoRF: loop-closure detection with scale invariant visual features. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3125–3130 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Robotics and Automation, School of Engineering, Department of Production and Management EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations