Robust Optical Flow Estimation Using the Monocular Epipolar Geometry
Abstract
The estimation of optical flow in cases of illumination change, sparsely-textured regions or fast moving objects is a challenging problem. In this paper, we analyze the use of a texture constancy constraint based on local descriptors (i.e., HOG) integrated with the monocular epipolar geometry to estimate robustly optical flow. The framework is implemented in differential data fidelities using a total variation model in a multi-resolution scheme. Besides, we propose an effective method to refine the fundamental matrix along with the estimation of the optical flow. Experimental results based on the challenging KITTI dataset show that the integration of texture constancy constraint with the monocular epipolar line constraint and the enhancement of the fundamental matrix significantly increases the accuracy of the estimated optical flow. Furthermore, a comparison with existing state-of-the-art approaches shows better performance for the proposed approach.
Keywords
Optical flow Epipolar geometry HOG descriptor Fundamental matrix Texture constraintReferences
- 1.Molnár, J., Chetverikov, D., Fazekas, S.: Illumination-robust variational optical flow using cross-correlation. Comput. Vis. Image Underst. 114(10), 1104–1114 (2010)CrossRefGoogle Scholar
- 2.Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2464–2471 (2010)Google Scholar
- 3.Drulea, M., Nedevschi, S.: Motion estimation using the correlation transform. IEEE Trans. Image Process. 22(8), 3260–3270 (2013)CrossRefGoogle Scholar
- 4.Mueller, T., Rabe, C., Rannacher, J., Franke, U., Mester, R.: Illumination-robust dense optical flow using census signatures. In: Joint Pattern Recognition Symposium, pp. 236–245 (2011)Google Scholar
- 5.Rashwan, H.A., Mohamed, M.A., García, M.A., Mertsching, B., Puig, D.: Illumination robust optical flow model based on histogram of oriented gradients. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 354–363. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_38CrossRefGoogle Scholar
- 6.Mirabdollah, M.H., Mohamed, M.A., Mertsching, B.: Distributed averages of gradients (DAG): a fast alternative for histogram of oriented gradients. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 97–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_8CrossRefGoogle Scholar
- 7.Mohamed, M.A., Rashwan, H.A., Mertsching, B., García, M.A., Puig, D.: Illumination-robust optical flow using a local directional pattern. IEEE Trans. Circ. Syst. Video Technol. 24(9), 1499–1508 (2014)CrossRefGoogle Scholar
- 8.Mohamed, M.A., Rashwan, H.A., Mertsching, B., Garcia, M.A., Puig, D.: On improving the robustness of variational optical flow against illumination changes. In: Proceedings of the 4th ACM/IEEE International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream, pp. 1–8 (2013)Google Scholar
- 9.Senst, T., Geistert, J., Sikora, T.: Robust local optical flow: long-range motions and varying illuminations. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4478–4482 (2016)Google Scholar
- 10.Kitt, B., Lategahn, H.: Trinocular optical flow estimation for intelligent vehicle applications. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp. 300–306 (2012)Google Scholar
- 11.Yamaguchi, K., McAllester, D., Urtasun, R.: Robust monocular epipolar flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1862–1869 (2013)Google Scholar
- 12.Valgaerts, L., Bruhn, A., Weickert, J.: A variational model for the joint recovery of the fundamental matrix and the optical flow. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 314–324. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69321-5_32CrossRefGoogle Scholar
- 13.Mohamed, M.A., Mirabdollah, M.H., Mertsching, B.: Monocular epipolar constraint for optical flow estimation. In: Liu, M., Chen, H., Vincze, M. (eds.) ICVS 2017. LNCS, vol. 10528, pp. 62–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68345-4_6CrossRefGoogle Scholar
- 14.Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
- 15.Garrigues, M., Manzanera, A.: Fast semi dense epipolar flow estimation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 427–435 (2017)Google Scholar
- 16.Mohamed, M.A., Mirabdollah, M.H., Mertsching, B.: Differential optical flow estimation under monocular epipolar line constraint. In: Nalpantidis, L., Krüger, V., Eklundh, J.-O., Gasteratos, A. (eds.) ICVS 2015. LNCS, vol. 9163, pp. 354–363. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20904-3_32CrossRefGoogle Scholar
- 17.Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation in complex dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4058–4066 (2016)Google Scholar
- 18.Kennedy, R., Taylor, C.J.: Optical flow with geometric occlusion estimation and fusion of multiple frames. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 364–377. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14612-6_27CrossRefGoogle Scholar
- 19.Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)CrossRefGoogle Scholar