Detecting Video Anomaly with a Stacked Convolutional LSTM Framework

  • Hao WeiEmail author
  • Kai Li
  • Haichang Li
  • Yifan Lyu
  • Xiaohui Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11754)


Automatic anomaly detection in real-world video surveillance is still challenging. In this paper, we propose an autoencoder architecture based on a stacked convolutional LSTM framework that highlights both spatial and temporal aspects in detecting anomalies of surveillance videos. The spatial component(i.e. spatial encoder/decoder) uses Convolutional Neural Network (CNN) and carries information about scenes and objects. The temporal component(i.e. temporal encoder/decoder) uses stacked convolutional LSTM and conveys object movement. Specifically, we integrate CNN and the stacked convolutional LSTM to learn normal patterns from the training data, which contains only normal events. With the integrated approach, our method can better model spatio-temporal information than many others. We train our models in an unsupervised manner, and labels are required only in the testing phase. Our method is evaluated on the datasets of Avenue, UCSD and ShanghaiTech Campus. The results show that the accuracy of our method rivals state-of-the-art methods with a faster detection speed.


Anomaly detection Stacked convolutional LSTM Unsupervised learning 


  1. 1.
    Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 555–560 (2008). Scholar
  2. 2.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009). Scholar
  3. 3.
    Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotemporal autoencoder. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017. LNCS, vol. 10262, pp. 189–196. Springer, Cham (2017). Scholar
  4. 4.
    Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR 2011, pp. 3449–3456 (2011).
  5. 5.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) International Conference on Computer Vision & Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE Computer Society, San Diego, June 2005.
  6. 6.
    Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006). Scholar
  7. 7.
    Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I.: Semi-supervised adapted hmms for unusual event detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 611–618, June 2005.
  8. 8.
    Girshick, R.: Fast r-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, December 2015.
  9. 9.
    Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Jun 2016.
  10. 10.
    Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2928, June 2009.
  11. 11.
    Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1446–1453, June 2009.
  12. 12.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Association for Computing Machinery (ACM), vol. 60, pp. 84–90, May 2017. Scholar
  13. 13.
    Li, C., Han, Z., Ye, Q., Jiao, J.: Abnormal behavior detection via sparse reconstruction analysis of trajectory. In: 2011 Sixth International Conference on Image and Graphics, pp. 807–810, August 2011.
  14. 14.
    Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June 2018.
  15. 15.
    Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: 2013 IEEE International Conference on Computer Vision, pp. 2720–2727, December 2013.
  16. 16.
    Luo, W., Liu, W., Gao, S.: Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 439–444, July 2017.
  17. 17.
    Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, October 2017.
  18. 18.
    Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1975–1981, June 2010.
  19. 19.
    Medel, J.R.: Anomaly detection using predictive convolutional long short-term memory units (2016)Google Scholar
  20. 20.
    Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1544–1554 (2008). Scholar
  21. 21.
    Reddy, V., Sanderson, C., Lovell, B.C.: Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture. In: CVPR 2011 WORKSHOPS, pp. 55–61, June 2011.
  22. 22.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: Towards real-time object detection with region proposal networks, vol. 39, pp. 1137–1149. Institute of Electrical and Electronics Engineers (IEEE), June 2017. Scholar
  23. 23.
    Sabokrou, M., Fathy, M., Hoseini, M., Klette, R.: Real-time anomaly detection and localization in crowded scenes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 56–62, June 2015.
  24. 24.
    Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 802–810. Curran Associates Inc., New York (2015). Scholar
  25. 25.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  26. 26.
    Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Jun 2018.
  27. 27.
    Tung, F., Zelek, J.S., Clausi, D.A.: Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance. Image Vis. Comput. 29(4), 230–240 (2011). Scholar
  28. 28.
    Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2054–2060, June 2010.
  29. 29.
    Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection (2015).
  30. 30.
    Yen, S., Wang, C.: Abnormal event detection using HOSF. In: 2013 International Conference on IT Convergence and Security (ICITCS), pp. 1–4, December 2013.
  31. 31.
    Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. CVPR 2011, 3313–3320 (2011). Scholar
  32. 32.
    Zhou, S., Shen, W., Zeng, D., Zhang, Z.: Unusual event detection in crowded scenes by trajectory analysis. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1300–1304, April 2015.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Software Chinese Academy of SciencesBeijingChina

Personalised recommendations