Brief Announcement: Analysis of a Memory-Efficient Self-stabilizing BFS Spanning Tree Construction

  • Ajoy K. Datta
  • Stéphane DevismesEmail author
  • Colette Johnen
  • Lawrence L. Larmore
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11914)


We present preliminary results on the last topic we collaborate with our late friend, Professor Ajoy Kumar Datta (1958–2019), who prematurely left us a few months ago. In this work, we shed new light on a self-stabilizing wave algorithm proposed by Colette Johnen in 1997 [12]. This algorithm constructs a BFS spanning tree in any connected rooted network. Nowadays, it is still the best existing self-stabilizing BFS spanning tree construction in terms of memory requirement, i.e., it only requires \(\varTheta (1)\) bits per edge. However, it has been proven assuming a weakly fair daemon. Moreover, its stabilization time was unknown. Here, we study the slightly modified version of this algorithm, still keeping the same memory requirement. We prove the self-stabilization of this variant under the distributed unfair daemon and show a stabilization time in \(O({\mathcal {D}}\cdot n^2)\) rounds, where \({\mathcal {D}}\) is the network diameter and n the number of processes.


Self-stabilization BFS spanning tree Distributed unfair daemon Stabilization time Round complexity 


  1. 1.
    Afek, Y., Bremler-Barr, A.: Self-stabilizing unidirectional network algorithms by power supply. Chicago J. Theor. Comput. Sci. (1998) Google Scholar
  2. 2.
    Afek, Y., Kutten, S.,Yung, M. : Memory-efficient self-stabilizing protocols for general networks. In: WDAG 1990, pp. 15–28 (1990)CrossRefGoogle Scholar
  3. 3.
    Bui, A., Datta, A.K., Petit, F., Villain, V.: Optimal PIF in tree networks. In: WDAS 1999, pp. 1–16 (1999)Google Scholar
  4. 4.
    Chen, N., Yu, H., Huang, S.: A self-stabilizing algorithm for constructing spanning trees. IPL 39, 147–151 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Collin, Z., Dolev, S.: Self-stabilizing depth-first search. IPL 49(6), 297–301 (1994)CrossRefGoogle Scholar
  6. 6.
    Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of fundamental protocols. ACM TAAS. 4(1), 6 (2009)Google Scholar
  7. 7.
    Cournier, A., Rovedakis, S., Villain, V.: The first fully polynomial stabilizing algorithm for BFS tree construction. In: OPODIS 2011, pp. 159–174 (2011)Google Scholar
  8. 8.
    Devismes, S., Johnen, C.: Silent self-stabilizing BFS tree algorithms revisited. JPDC 97, 11–23 (2016)Google Scholar
  9. 9.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuring only read/write atomicy. Distrib. Comput. 7, 3–16 (1993)CrossRefGoogle Scholar
  10. 10.
    Glacet, C., Hanusse, N., Ilcinkas, D., Johnen, C.: Disconnected components detection and rooted shortest-path tree maintenance in networks. In: SSS 2014, pp. 120–134 (2014)Google Scholar
  11. 11.
    Huang, S.-T., Chen, N.-S.: A self-stabilizing algorithm for constructing breadth-first trees. IPL 41, 109–117 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Johnen, C.: Memory-efficient self-stabilizing algorithm to construct BFS spanning trees. In: WSS 1997, pp. 125–140 (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ajoy K. Datta
    • 1
  • Stéphane Devismes
    • 2
    Email author
  • Colette Johnen
    • 3
  • Lawrence L. Larmore
    • 1
  1. 1.Department of Computer ScienceUniversity of NevadaRenoUSA
  2. 2.Université Grenoble Alpes, VERIMAG, UMR 5104GrenobleFrance
  3. 3.Université de Bordeaux, LaBRI, UMR 5800BordeauxFrance

Personalised recommendations