Advertisement

Adaptive Versioning in Transactional Memories

  • Pavan Poudel
  • Gokarna SharmaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11914)

Abstract

Transactional memory has been receiving much attention from both academia and industry. In transactional memory, program code is split into transactions, blocks of code that appear to execute atomically. Transactions are executed speculatively and the speculative execution is supported through data versioning and conflict detection and resolution mechanisms. Lazy versioning makes aborts fast but penalizes commits, whereas eager versioning makes commits fast but penalizes aborts. In this paper, we present an adaptive versioning approach that dynamically switches between eager and lazy versioning at runtime based on appropriate system parameters so that the performance of a transactional memory system is always better than that is obtained using either eager or lazy versioning individually. We implemented our adaptive versioning approach in the latest TinySTM distribution and extensively evaluated it through 5 micro-benchmarks and 8 complex benchmarks from STAMP and STAMPEDE suites. The results show significant benefits of our approach, giving performance improvements as much as 6.3x for execution time and as much as 170x for number of aborts.

References

  1. 1.
    The Persistent Memory Development Kit (PMDK). https://github.com/pmem/pmdk/. Accessed 14 Feb 2019
  2. 2.
  3. 3.
    Alistarh, D., Haider, S.K., Kübler, R., Nadiradze, G.: The transactional conflict problem. In: SPAA, pp. 383–392 (2018)Google Scholar
  4. 4.
    Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded transactional memory. In: HPCA, pp. 316–327 (2005)Google Scholar
  5. 5.
    Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large scale clusters. In: PPoPP, pp. 247–258 (2008)Google Scholar
  6. 6.
    Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.Q.: Robust architectural support for transactional memory in the power architecture. In: ISCA, pp. 225–236 (2013)Google Scholar
  7. 7.
    Coburn, J., et al.: NV-Heaps: making persistent objects fast and safe with next-generation, non-volatile memories. In: ASPLOS, pp. 105–118 (2011)Google Scholar
  8. 8.
    Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing ownership records. In: PPOPP, pp. 67–78 (2010)Google Scholar
  9. 9.
    Dragojevic, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In: PLDI, pp. 155–165 (2009)Google Scholar
  10. 10.
    Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-based software transactional memory. IEEE Trans. Parallel Distrib. Syst. 21(12), 1793–1807 (2010)CrossRefGoogle Scholar
  11. 11.
    Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software transactional memory. In: PPOPP, pp. 237–246 (2008)Google Scholar
  12. 12.
    Fung, W.W.L., Singh, I., Brownsword, A., Aamodt, T.M.: Hardware transactional memory for GPU architectures. In: MICRO, pp. 296–307 (2011)Google Scholar
  13. 13.
    Hammond, L., et al.: Transactional memory coherence and consistency. SIGARCH Comput. Archit. News 32(2), 102 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Haring, R., et al.: The IBM Blue Gene/Q compute chip. IEEE Micro 32(2), 48–60 (2012)CrossRefGoogle Scholar
  15. 15.
    Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.N.: Software transactional memory for dynamic-sized data structures. In: PODC, pp. 92–101 (2003)Google Scholar
  16. 16.
    Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures. In: ISCA, pp. 289–300 (1993)Google Scholar
  17. 17.
  18. 18.
    Keidar, I., Perelman, D.: Multi-versioning in transactional memory. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory. Foundations, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 150–165. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14720-8_7CrossRefGoogle Scholar
  19. 19.
    Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. Theory Comput. Syst. 57(1), 261–285 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concurrency in a transactional memory cluster. In: PPoPP, pp. 198–208 (2006)Google Scholar
  21. 21.
    Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional applications for multi-processing. In: IISWC, pp. 35–46 (2008)Google Scholar
  22. 22.
    Moore, K.E.: LogTM: log-based transactional memory. In: HPCA, pp. 258–269 (2006)Google Scholar
  23. 23.
    Nakaike, T., Odaira, R., Gaudet, M., Michael, M.M., Tomari, H.: Quantitative comparison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12, Intel Core, and POWER8. In: ISCA, pp. 144–157 (2015)Google Scholar
  24. 24.
    Nguyen, D., Pingali, K.: What scalable programs need from transactional memory. In: ASPLOS, pp. 105–118 (2017)Google Scholar
  25. 25.
    Poudel, P., Sharma, G.: An adaptive logging framework for persistent memories. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 32–49. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03232-6_3CrossRefGoogle Scholar
  26. 26.
    Rajwar, R., Herlihy, M., Lai, K.: Virtualizing transactional memory. In: ISCA, pp. 494–505. IEEE Computer Society, Washington, DC (2005)Google Scholar
  27. 27.
    Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2), 99–116 (1997)CrossRefGoogle Scholar
  28. 28.
    Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory. In: ASPLOS, pp. 91–104 (2011)Google Scholar
  29. 29.
    Wan, H., Lu, Y., Xu, Y., Shu, J.: Empirical study of redo and undo logging in persistent memory. In: NVMSA, pp. 1–6 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceKent State UniversityKentUSA

Personalised recommendations