Advertisement

Control and Monitoring System for Edaphoclimatic Variables in Rice Cultivation: Case Study

  • Carlota Delgado-VeraEmail author
  • Evelyn Solis-Aviles
  • Andrea Sinche-Guzman
  • Yoansy Garcia-Ortega
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1124)

Abstract

The project consists of monitoring edaphoclimatic parameters that influence the development of rice, in order to avoid that the crop is affected by these factors which are, PH, salinity, temperature, humidity, water level, and rainfall intensity. Soil salinity is one of the most important parameters that need our especial attention, because side effects can affect greatly the rice crops according to the vegetative phase, it can be very harmful in the initial phase but the damage will last until the latter phase. This paper presents a case study of a system implementation which aims to improve the edaphic environment, in order to optimize the crop production system. Different types of sensors were used in hardware development, and they were integrated with the microcontroller. Regarding the development of software, some programming languages are integrated such as Phyton, MySql and Arduino IDE interface which works for the acquisition, processing, and display of data.

Keywords

Rice Soil Climate Monitoring system Sensors 

References

  1. 1.
    Corporacion Financiera Nacional: FICHA SECTORIAL : Arroz (2018)Google Scholar
  2. 2.
    Proaño Ramírez, G.A., Vega Jaramillo, F.Y.: Gasto en el consumo de cereales y derivados frente al índice de precios del arroz en el Ecuador, 2009 – 2014. Espacios, 38 (2017)Google Scholar
  3. 3.
    Viteri Viteri, G.I., Edison Zambrano, C.: Comercialización de arroz en Ecuador: Análisis de la evolución de precios en el eslabón productor-consumidor. Cienc. y Tecnol. 9, 11 (2017)CrossRefGoogle Scholar
  4. 4.
    Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C.: Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015)CrossRefGoogle Scholar
  5. 5.
    Mondal, M.S., et al.: Simulating yield response of rice to salinity stress with the AquaCrop model. Environ. Sci. Process. Impacts 17, 1118–1126 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Quevedo Amaya, Y.M., Beltrán Medina, J.I., Barragán Quijano, E.: Identification of climatic and physiological variables associated with rice (Oryza sativa L.) yield under tropical conditions. Rev. Fac. Nac. Agron. Medellín 72, 8699–8706 (2019)CrossRefGoogle Scholar
  7. 7.
    Mosleh, M., Hassan, Q., Chowdhury, E.: Application of remote sensors in mapping rice area and forecasting its production: a review. Sensors 15, 769–791 (2015)CrossRefGoogle Scholar
  8. 8.
    Valverde-Arias, O., Garrido, A., Valencia, J.L., Tarquis, A.M.: Using geographical information system to generate a drought risk map for rice cultivation: case study in Babahoyo canton (Ecuador). Biosyst. Eng. 168, 26–41 (2018)CrossRefGoogle Scholar
  9. 9.
    Sakthipriya, N.: An effective method for crop monitoring using wireless sensor network. Middle East J. Sci. Res. 20, 1127–1132 (2014)Google Scholar
  10. 10.
    Masriwilaga, A.A., Munadi, R., Rahmat, B.: Wireless Sensor Network for Monitoring Rice Crop Growth. 5, 47–52 (2018)Google Scholar
  11. 11.
    Spinelli, G.M., Gottesman, Z.L.: A low-cost Arduino-based datalogger with cellular modem and FTP communication for irrigation water use monitoring to enable access to CropManage. HardwareX 6, e00066 (2019)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Zhang, Y.F., Wu, C.H., Wang, J.F.: Analysis of black soil environment based on Arduino. In: IOP Conference Series Earth and Environmental Science, vol. 67, p. 012008 (2017)Google Scholar
  13. 13.
    Singh, P., Saikia, S.: Arduino-based smart irrigation using water flow sensor, soil moisture sensor, temperature sensor and ESP8266 WiFi module. In: IEEE Region 10 Humanitarian Technology Conference 2016, R10-HTC 2016 - Proceedings (2017)Google Scholar
  14. 14.
    Li, Y., Zhang, Y.-F., Wu, C.-H., Wang, J.-F.: The application of data acquisition system of rice planting environment based on the Arduino and LabVIEW. J. Anhui Agric. Sci. 12, 65 (2017)Google Scholar
  15. 15.
    Fajar, M., Halid, A., Arfandy, H., Munir, A.: Development of a low cost wireless sensor network for a real time paddy field monitoring system. Int. J. u- e- Serv. Sci. Technol. 9, 397–408 (2016)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Gui, T., Tk, B.: Python interface to Tcl/Tk. https://docs.python.org/2/library/tkinter.html (2016)
  18. 18.
    Mico, O.M., Santos, P.B.M., Caldo, R.B.: Web-based smart farm data monitoring system : a prototype. 3, 85–96 (2016)Google Scholar
  19. 19.
    Bitella, G., Rossi, R., Bochicchio, R., Perniola, M., Amato, M.: A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Sensors (Switzerland) 14, 19639–19659 (2014)CrossRefGoogle Scholar
  20. 20.
    Shereen, A., Mumtaz, S., Raza, S., Khan, M.A., Solangi, S.: Salinity effects on seedling growth and yield components of different inbred rice lines. Pakistan J. Bot. 37, 131–139 (2005)Google Scholar
  21. 21.
    Huang, L., et al.: Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agric. Water Manag. 194, 48–57 (2017)CrossRefGoogle Scholar
  22. 22.
    Ghosh, B., Ali Md, N.: Response of rice under salinity stress: a review update. Rice Res. Open Access. 4, 2–9 (2016)CrossRefGoogle Scholar
  23. 23.
    Morales, C., Brzovic, F., Dascal, G., Aranibar, Z., Mora, L.: Measuring the economic value of land degradation/ desertification considering the effects of climate change. A study for Latin America and the Caribbean La valeur économique de la dégradation des terres/ désertification considérant les effets du change. Sci. Chang. planétaires/ Sécheresse, 23 (2012)Google Scholar
  24. 24.
    Ruiz-Sannchez, M., Muñoz-Hernndezndez, Y.: Manejo del agua de riego en el cultivo de arroz (Oryza sativa L.) por trasplante, su efecto en el rendimiento agrícola e industrial. Cultiv. Trop. 37, 178–186 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer Engineering and Computer Science, Faculty of Agricultural SciencesAgrarian University of EcuadorGuayaquilEcuador
  2. 2.Agronomic Engineering School, Faculty of Agricultural SciencesAgrarian University of EcuadorGuayaquilEcuador

Personalised recommendations