Advertisement

Using Sentiment Analysis and Automated Reasoning to Boost Smart Lighting Systems

  • Francesco CauteruccioEmail author
  • Luca Cinelli
  • Giancarlo Fortino
  • Claudio Savaglio
  • Giorgio Terracina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11874)

Abstract

Smart cities, arising all around the globe, encourage the birth of new and different urban infrastructures, with interesting challenges and opportunities. Within each smart city, a smart community emerges, which integrates technological solutions for the definition of innovative models for the smart management of urban areas. In this paper, we describe the research activities conducted within a smart city project, introducing a novel framework for managing smart lighting systems within a smart community. We start by describing the proposed framework, then we specialize it to the specific use case. One of the main novelties of the proposed approach is the use of automated reasoning and sentiment analysis to boost the smart lighting process.

Keywords

Smart city Smart lighting Artificial intelligence Big data 

Notes

Acknowledgement

This work was partially supported by: (i) the Italian Ministry for Economic Development (MISE) under the project “Smarter Solutions in the Big Data World”, funded within the call “HORIZON2020” PON I&C 2014–2020.

References

  1. 1.
    Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunctive datalog system DLV. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24206-9_17CrossRefGoogle Scholar
  2. 2.
    Cauteruccio, F., et al.: Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Inf. Fus. 52, 13–30 (2019).  https://doi.org/10.1016/j.inffus.2018.11.010CrossRefGoogle Scholar
  3. 3.
    Fortino, G., Rovella, A., Russo, W., Savaglio, C.: Towards cyberphysical digital libraries: integrating IoT smart objects into digital libraries. In: Guerrieri, A., Loscri, V., Rovella, A., Fortino, G. (eds.) Management of Cyber Physical Objects in the Future Internet of Things. IT, pp. 135–156. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26869-9_7CrossRefGoogle Scholar
  4. 4.
    Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M.: Agent-oriented cooperative smart objects: from iot system design to implementation. IEEE Trans. Syst. Man Cybern.: Syst. 99, 1–18 (2017)Google Scholar
  5. 5.
    Gharaibeh, A., et al.: Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 19(4), 2456–2501 (2017)CrossRefGoogle Scholar
  6. 6.
    Harrison, C., et al.: Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010)CrossRefGoogle Scholar
  7. 7.
    Lavric, A., Popa, V., Finis, I.: The design of a street lighting monitoring and control system. In: 2012 International Conference and Exposition on Electrical and Power Engineering, pp. 314–317. IEEE, Iasi, Romania (2012)Google Scholar
  8. 8.
    Lukkien, J., Verhoeven, R.: The case of dynamic street lighting an exploration of long-term data collection. In: 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), pp. 1–8. IEEE, Luxembourg, Luxembourg (2015)Google Scholar
  9. 9.
    Mahoor, M., Salmasi, F.R., Najafabadi, T.A.: A hierarchical smart street lighting system with brute-force energy optimization. IEEE Sens. J. 17(9), 2871–2879 (2017)CrossRefGoogle Scholar
  10. 10.
    Navigli, R., Ponzetto, S.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Siddiqui, A., Ahmad, A., Yang, H., Lee, C.: ZigBee based energy efficient outdoor lighting control system. In: 2012 14th International Conference on Advanced Communication Technology (ICACT), pp. 916–919. IEEE, PyeongChang, South Korea (2012)Google Scholar
  12. 12.
    Washburn, D., Sindhu, U., Balaouras, S., Dines, R., Hayes, N., Nelson, L.: Helping CIOs understand ‘smart city’ initiatives. Forrester, Making Leaders Successful Every Day (2010)Google Scholar
  13. 13.
    Yusoff, Y., Rosli, R., Karnaluddin, M.U., Samad, M.: Towards smart street lighting system in Malaysia. In: 2013 IEEE Symposium on Wireless Technology Applications (ISWTA), pp. 301–305. IEEE, Kuching, Malaysia (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DEMACSUniversity of CalabriaRendeItaly
  2. 2.DIMESUniversity of CalabriaRendeItaly

Personalised recommendations