Multidimensional Neuroimaging Processing in ReCaS Datacenter

  • Angela LombardiEmail author
  • Eufemia Lella
  • Nicola Amoroso
  • Domenico Diacono
  • Alfonso Monaco
  • Roberto Bellotti
  • Sabina Tangaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11874)


In the last decade, a large amount of neuroimaging datasets became publicly available on different archives, so there is an increasing need to manage heterogeneous data, aggregate and process them by means of large-scale computational resources. ReCaS datacenter offers the most important features to manage big datasets, process them, store results in efficient manner and make all the pipeline steps available for reproducible data analysis. Here, we present a scientific computing environment in ReCaS datacenter to deal with common problems of large-scale neuroimaging processing. We show the general architecture of the datacenter and the main steps to perform multidimensional neuroimaging processing.


Neuroimaging Pipeline Datacenter Parallel computing Big data 


  1. 1.
    Amoroso, N., et al.: Medical physics applications in Bari ReCaS farm. In: High Performance Scientific Computing Using Distributed Infrastructures: Results and Scientific Applications Derived from the Italian PON ReCaS Project, pp. 271–278. World Scientific (2017)Google Scholar
  2. 2.
    Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)CrossRefGoogle Scholar
  3. 3.
    Cox, R.W.: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29(3), 162–173 (1996)CrossRefGoogle Scholar
  4. 4.
    Craddock, C., et al.: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). Front Neuroinform. 42 (2013)Google Scholar
  5. 5.
    Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659 (2014) CrossRefGoogle Scholar
  6. 6.
    Dinov, I., et al.: Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Front. Neuroinform. 3, 22 (2009)CrossRefGoogle Scholar
  7. 7.
    Dinov, I.D., et al.: High-throughput neuroimaging-genetics computational infrastructure. Front. Neuroinform. 8, 41 (2014)CrossRefGoogle Scholar
  8. 8.
    Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  9. 9.
    Gorgolewski, K.J., et al.: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 160044 (2016)CrossRefGoogle Scholar
  10. 10.
    Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)CrossRefGoogle Scholar
  11. 11.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)CrossRefGoogle Scholar
  12. 12.
    Lella, E., et al.: Communicability characterization of structural DWI subcortical networks in Alzheimer’s disease. Entropy 21(5), 475 (2019)CrossRefGoogle Scholar
  13. 13.
    Lella, E., et al.: Communicability disruption in Alzheimer’s diseaseconnectivity networks. J. Complex Netw. 7(1), 83–100 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lombardi, A., et al.: Modelling cognitive loads in schizophrenia by means of new functional dynamic indexes. NeuroImage 195, 150–164 (2019)CrossRefGoogle Scholar
  15. 15.
    Maglietta, R., et al.: Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Anal. Appl. 19(2), 579–591 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, Amsterdam (2011)Google Scholar
  17. 17.
    Poldrack, R.A., Gorgolewski, K.J.: Making big data open: data sharing in neuroimaging. Nat. Neurosci. 17(11), 1510 (2014)CrossRefGoogle Scholar
  18. 18.
    Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)CrossRefGoogle Scholar
  19. 19.
    Van Horn, J.D., Toga, A.W.: Human neuroimaging as a “big data” science. Brain Imaging Behav. 8(2), 323–331 (2014)CrossRefGoogle Scholar
  20. 20.
    Zuo, X.N., et al.: An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1, 140049 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Angela Lombardi
    • 1
    Email author
  • Eufemia Lella
    • 1
    • 2
  • Nicola Amoroso
    • 2
  • Domenico Diacono
    • 1
  • Alfonso Monaco
    • 1
  • Roberto Bellotti
    • 1
    • 2
  • Sabina Tangaro
    • 1
  1. 1.Istituto Nazionale di Fisica Nucleare, Sezione di BariBariItaly
  2. 2.Dipartimento Interateneo di Fisica “M. Merlin”Universitá degli Studi di BariBariItaly

Personalised recommendations