Advertisement

A PageRank Inspired Approach to Measure Network Cohesiveness

  • V. Carchiolo
  • M. Grassia
  • A. Longheu
  • M. Malgeri
  • G. Mangioni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11874)

Abstract

Basics of PageRank algorithm have been widely adopted in its variations, tailored for specific scenarios. In this work, we consider the Black Hole metric, an extension of the original PageRank that leverages a (bogus) black hole node to reduce the arc weights normalization effect. We further extend this approach by introducing several black holes to investigate on the cohesiveness of the network, a measure of the strength among nodes belonging to the network. First experiments on real networks show the effectiveness of the proposed approach.

Notes

Acknowledgements

This work was supported in part by the Piano per la Ricerca 2016/2018 DIEEI Universitá degli Studi di Catania.

References

  1. 1.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Seventh International World-Wide Web Conference (WWW 1998) (1998)Google Scholar
  2. 2.
    Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Trans. Internet Technol. 5(1), 92–128 (2005)CrossRefGoogle Scholar
  3. 3.
    Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Math. 1, 335–380 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lee, H.C., Borodin, A.: Perturbation of the hyper-linked environment. In: Warnow, T., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 272–283. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-45071-8_29CrossRefGoogle Scholar
  5. 5.
    Richardson, M., Domingos, P.: The intelligent surfer: probabilistic combination of link and content information in PageRank. In: Advances in Neural Information Processing Systems 14. MIT Press (2002)Google Scholar
  6. 6.
    Zhirov, A.O., Zhirov, O.V., Shepelyansky, D.L.: Two-dimensional ranking of Wikipedia articles. CoRR abs/1006.4270 (2010)Google Scholar
  7. 7.
    Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: WTF: the who to follow service at Twitter. In: Proceedings of the 22nd International Conference on World Wide Web, WWW ’13, Republic and Canton of Geneva, Switzerland, International World Wide Web Conferences Steering Committee, pp. 505–514 (2013)Google Scholar
  8. 8.
    Chen, L., Chen, G., Wang, F.: Recommender systems based on user reviews: the state of the art. User Model. User-Adap. Interact. 25(2), 99–154 (2015)CrossRefGoogle Scholar
  9. 9.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Searching for experts in a context-aware recommendation network. Comput. Hum. Behav. 51, 1086–1091 (2015). Computing for Human Learning, Behaviour and Collaboration in the Social and Mobile Networks EraCrossRefGoogle Scholar
  10. 10.
    Kim, Y.A., Phalak, R.: A trust prediction framework in rating-based experience sharing social networks without a web of trust. Inf. Sci. 191, 128–145 (2012)CrossRefGoogle Scholar
  11. 11.
    Carchiolo, V., Longheu, A., Malgeri, M.: Reliable peers and useful resources: searching for the best personalised learning path in a trust- and recommendation-aware environment. Inf. Sci. 180(10), 1893–1907 (2010). Special Issue on Intelligent Distributed Information SystemsCrossRefGoogle Scholar
  12. 12.
    Serrano-Guerrero, J., Romero, F., Olivas, J.: Hiperion: a fuzzy approach for recommending educational activities based on the acquisition of competences. Inf. Sci. 248, 114–129 (2013)CrossRefGoogle Scholar
  13. 13.
    Roa-Valverde, A.J., Sicilia, M.A.: A survey of approaches for ranking on the web of data. Inf. Retr. 17(4), 295–325 (2014)CrossRefGoogle Scholar
  14. 14.
    Senanayake, U., Piraveenan, M., Zomaya, A.: The PageRank-index: going beyond citation counts in quantifying scientific impact of researchers. PLoS ONE 10(8), e0134794 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, X., Tao, T., Sun, J.T., Shakery, A., Zhai, C.: DirichletRank: solving the zero-one gap problem of pagerank. ACM Trans. Inf. Syst. 26(2), 1–29 (2008)CrossRefGoogle Scholar
  16. 16.
    Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized PageRank. Proc. VLDB Endow. 4(3), 173–184 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., Li, X.: Distributed PageRank computation based on iterative aggregation-disaggregation methods. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 578–585 (2005)Google Scholar
  18. 18.
    Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Black hole metric: overcoming the PageRank normalization problem. Inf. Sci. 438, 58–72 (2018) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Direct trust assignment using social reputation and aging. J. Ambient Intell. Hum. Comput. 8(2), 167–175 (2017)CrossRefGoogle Scholar
  20. 20.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Trusting evaluation by social reputation. In: Badica, C., Mangioni, G., Carchiolo, V., Burdescu, D.D. (eds.) Intelligent Distributed Computing, Systems and Applications, pp. 75–84. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85257-5_8CrossRefzbMATHGoogle Scholar
  21. 21.
    Advogato network dataset - KONECT, April 2017Google Scholar
  22. 22.
    Massa, P., Salvetti, M., Tomasoni, D.: Bowling alone and trust decline in social network sites. In: Proceedings of the International Conference Dependable, Autonomic and Secure Computing, pp. 658–663 (2009)Google Scholar
  23. 23.
    Batagelj, V., Mrvar, A.: Pajek - program for large network analysis. Connections 21(2), 47–57 (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. Carchiolo
    • 1
  • M. Grassia
    • 2
  • A. Longheu
    • 2
  • M. Malgeri
    • 2
  • G. Mangioni
    • 2
  1. 1.Dip. di Matematica e InformaticaUniversità degli Studi di CataniaCataniaItaly
  2. 2.Dip. Ingegneria Elettrica Elettronica InformaticaUniversità degli Studi di CataniaCataniaItaly

Personalised recommendations