Advertisement

Load Balancing in Hybrid Clouds Through Process Mining Monitoring

  • Kenneth K. AzumahEmail author
  • Sokol Kosta
  • Lene T. Sørensen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11874)

Abstract

An increasing number of organisations are harnessing the benefits of hybrid cloud adoption to support their business goals and achieving privacy and control in a private cloud whilst enjoying the on-demand scalability of the public cloud. However the complexity introduced by the combination of the public and private clouds worsens visibility in cloud monitoring with regards compliance to given business constraints. Load balancing as a technique for evenly distributing workloads can be leveraged together with processing mining to help ease the monitoring challenge. In this paper we propose a load balancing approach to distribute workloads in order to minimise violations to specified business constraints. The scenario of a hospital consultation process is employed as a use case in monitoring and controlling Octavia load balancing-as-a-service in OpenStack. The results show a co-occurrence of constraint violations and Octavia L7 Policy creation, indicating a successful application of process mining monitoring in load balancing.

Keywords

Hybrid cloud Process mining Event calculus OpenStack Octavia 

References

  1. 1.
    Azumah, K.K., Sorensen, L.T., Tadayoni, R.: Hybrid cloud service selection strategies: a qualitative meta-analysis. In: 2018 IEEE 7th International Conference on Adaptive Science and Technology (ICAST), pp. 1–8 (2018)Google Scholar
  2. 2.
    Gandhi, R., Hu, Y.C., Zhang, M.: Yoda: a highly available layer-7 load balancer. In: Proceedings of the Eleventh European Conference on Computer Systems - EuroSys 2016, pp. 1–16 (2016)Google Scholar
  3. 3.
    Rathore, N.: Performance of hybrid load balancing algorithm in distributed web server system. Wirel. Pers. Commun. 101(3), 1233–1246 (2018)CrossRefGoogle Scholar
  4. 4.
    Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring business constraints with the event calculus. ACM Trans. Intell. Syst. Technol. 5(1), 1–30 (2013)CrossRefGoogle Scholar
  5. 5.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)CrossRefGoogle Scholar
  6. 6.
    De Masellis, R., Maggi, F.M., Montali, M.: Monitoring data-aware business constraints with finite state automata. In: Proceedings of the 2014 International Conference on Software and System Process - ICSSP 2014, pp. 134–143 (2014)Google Scholar
  7. 7.
    Maggi, F.M., Dumas, M., García-Bañuelos, L., Montali, M.: Discovering data-aware declarative process models from event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40176-3_8CrossRefGoogle Scholar
  8. 8.
    Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business constraints with linear temporal logic: an approach based on colored automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 132–147. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23059-2_13CrossRefGoogle Scholar
  9. 9.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07881-6_31CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Sharma, S., Sahil Verma, D., Kiran Jyoti, D., Kavita, D.: Hybrid bat algorithm for balancing load in cloud computing. Int. J. Eng. Technol. 7(4.12), 26–29 (2018)CrossRefGoogle Scholar
  12. 12.
    Rahhali, H.: A new conception of load balancing in cloud computing using Hybrid heuristic algorithm. Int. J. Comput. Sci. Issues 15(6), 1–8 (2018)Google Scholar
  13. 13.
    Aktas, M.S.: Hybrid cloud computing monitoring software architecture. Concurr. Comput. Pract. Exp. 30(21), e4694 (2018)CrossRefGoogle Scholar
  14. 14.
    Liu, Y.C., Li, C.L.: A stratified monitoring model for hybrid cloud. Appl. Mech. Mater. 719–720, 900–906 (2015). Materials and Engineering TechnologyCrossRefGoogle Scholar
  15. 15.
    Azumah, K.K., Kosta, S., Sørenson, L.T.: Scheduling in the hybrid cloud constrained by process mining. In: Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom, vol. 2018-Decem, pp. 308–313 (2018)Google Scholar
  16. 16.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)CrossRefGoogle Scholar
  17. 17.
    Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints in declare. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC 2013, p. 1391 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CMIAalborg UniversityCopenhagenDenmark

Personalised recommendations