Advertisement

Microelectrode Recording in Neurosurgical Patients

  • Bornali Kundu
  • Andrea A. Brock
  • John A. Thompson
  • John D. RolstonEmail author
Chapter
  • 114 Downloads

Abstract

Microelectrode recording (MER) is used to localize and map deep brain structures during neurosurgical procedures and has been a fruitful technique in human neuroscience research. In this chapter, we briefly review the biophysical principles of MER, discuss the use of the technique for targeting as it relates to movement disorders, and conclude with a comparison of the accuracy obtained with MER and with direct targeting with imaging.

Keywords

Microelectrode recording Parkinson disease Single-unit recording Local field potentials Movement disorders Dystonia Globus pallidus Subthalamic nucleus Ventral intermediate nucleus 

Abbreviations

AC-PC

Anterior commissure–posterior commissure

CT

Computed tomography

DBS

Deep brain stimulation

DSP

Digital signal processing

EMG

Electromyography

GPe

Globus pallidus externus

GPi

Globus pallidus internus

LFP

Local field potential

MER

Microelectrode recording

MRI

Magnetic resonance imaging

PD

Parkinson disease

SNr

Substantia nigra pars reticulate

STN

Subthalamic nucleus

UPDRS

Unified Parkinson’s Disease Rating Scale

Vc

Ventrocaudalis

Vim

Ventral intermediate nucleus of the thalamus

Voa

Ventralis oralis anterior

Vop

Ventralis oralis posterior

References

  1. 1.
    Starr PA. Technical considerations in movement disorder surgery. In: Schulder M, Gandhi C, editors. Handbook of stereotactic and functional neurosurgery. 1st ed. New York: Marcel Decker Inc; 2003.Google Scholar
  2. 2.
    Satzer D, Lanctin D, Eberly LE, Abosch A. Variation in deep brain stimulation electrode impedance over years following electrode implantation. Stereotact Funct Neurosurg [Internet]. 2014 [cited 2018 Dec 12];92(2):94–102. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531050/pdf/nihms554312.pdf.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Johnson JB. Thermal agitation of electricity in conductors. Phys Rev [Internet]. 1928 [cited 2018 Dec 12];32(1):97–109. Available from: https://link.aps.org/doi/10.1103/PhysRev.32.97.CrossRefGoogle Scholar
  4. 4.
    Desai SA. Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Front Neuroeng [Internet]. 2010;3(May):1–11. Available from: http://journal.frontiersin.org/article/10.3389/fneng.2010.00005/abstract.Google Scholar
  5. 5.
    Shils JL, Patterson T, Stecker MM. Electrical properties of metal microelectrodes. Am J Electroneurodiagnostic Technol [Internet]. 2000 [cited 2018 Dec 14];40(2):143–53. Available from: https://www.tandfonline.com/doi/full/10.1080/1086508X.2000.11079297.
  6. 6.
    Spiegel EA, Wycis HT. Ansotomy in paralysis agitans. Arch Neurol Psychiatry [Internet]. 1954 [cited 2018 Dec 14];71(5):598. Available from: http://archneurpsyc.jamanetwork.com/article.aspx?doi=10.1001/archneurpsyc.1954.02320410060005.
  7. 7.
    Spiegel E, Wycis T. Stereoencephalotomy. Part II. Clinical and physiological application. In: Clinical and physiological applications. New York: Grune and Straton; 1962.Google Scholar
  8. 8.
    Albe-Fessard D, Arfel G, Guiot G, Derome P, Hertzog E, Vourc’h G, et al. Electrophysiological studies of some deep cerebral structures in man. J Neurol Sci [Internet]. 1966 [cited 2018 Nov 14];3(1):37–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5331941.PubMedCrossRefGoogle Scholar
  9. 9.
    Meyers R. Surgical procedure for postencephalitic tremor, with notes on the physiology of the premotor fibers. Arch Neurol Psychiatr. 1940:455–9.Google Scholar
  10. 10.
    Wetzel N, Snider R. Neurophysiological correlates in human stereotaxis. Q Bull Northwest universirty Med Sch. 1958;32(4):386–92.Google Scholar
  11. 11.
    Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Stereotact Funct Neurosurg [Internet]. 1987 [cited 2018 Dec 14];50(1–6):344–6. Available from: https://www.karger.com/Article/FullText/100803.CrossRefGoogle Scholar
  12. 12.
    Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg [Internet]. 1996;84(2):203–14. Available from: http://thejns.org/doi/abs/10.3171/jns.1996.84.2.0203.PubMedCrossRefGoogle Scholar
  13. 13.
    Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery [Internet]. 1994;35(6):1126–9; discussion 1129–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7885558.CrossRefGoogle Scholar
  14. 14.
    Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas J-F, Perret JE, et al. Effect on parkinsonian signs and symptoms of bilateral STN stimulation. Lancet [Internet]. 1995 [cited 2018 Dec 14];345(8942):91–5. Available from: https://www.sciencedirect.com/science/article/pii/S0140673695900624?via%3Dihub.
  15. 15.
    Pinsker MO, Volkmann J, Falk D, Herzog J, Steigerwald F, Deuschl G, et al. Deep brain stimulation of the internal globus pallidus in dystonia: target localisation under general anaesthesia. Acta Neurochir. 2009;151(7):751–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Harries AM, Kausar J, Roberts SAG, Mocroft AP, Hodson JA, Pall HS, et al. Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. J Neurosurg [Internet]. 2012;116(1):107–13. Available from: http://thejns.org/doi/10.3171/2011.7.JNS11319.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwalb J, Hamani C, Lozano A. Thalamic deep brain stimulation for the control of tremor. In: Starr P, Barbaro N, Larson P, editors. Neurosurgical operative atlas: functional neurosurgery. 2nd ed. New York: Thieme; 2009.Google Scholar
  18. 18.
    Kopell B, Machado A, Rezai A. Chronic subthalamic nucleus stimulation for Parkinson’s disease. In: Starr P, Barbaro N, Larson P, editors. Neurosurgical operative atlas: functional neurosurgery. 2nd ed. New York: Thieme; 2009.Google Scholar
  19. 19.
    Pollak P, Krack P, Fraix V, Mendes A, Moro E, Chabardes S, et al. Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2002;17(SUPPL. 3)Google Scholar
  20. 20.
    Bejjani B-P, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, et al. Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg [Internet]. 2000 [cited 2018 Dec 13];92(4):615–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10761650.PubMedCrossRefGoogle Scholar
  21. 21.
    Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Sansur CA, Frysinger RC, Pouratian N, Fu K-M, Bittl M, Oskouian RJ, et al. Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg [Internet]. 2007;107(5):998–1003. Available from: http://thejns.org/doi/10.3171/JNS-07/11/0998.CrossRefGoogle Scholar
  23. 23.
    Zrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg [Internet]. 2012;116(1):84–94. Available from: http://thejns.org/doi/10.3171/2011.8.JNS101407.CrossRefGoogle Scholar
  24. 24.
    Starr PA, Rau GM, Davis V, Marks WJ, Ostrem JL, Simmons D, et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol [Internet]. 2005;93(6):3165–76. Available from: http://www.physiology.org/doi/10.1152/jn.00971.2004.CrossRefGoogle Scholar
  25. 25.
    Panov F, Larson P, Martin A, Starr P. Deep brain stimulation for Parkinson’s disease. In: Winn H, editor. Youman’s neurological surgery. 7th ed. Philadelphia: Elsevier; 2016. p. 619–26.Google Scholar
  26. 26.
    Anderson WS, Winberry J, Liu CC, Shi C, Lenz FA. Applying microelectrode recordings in neurosurgery. Contemp Neurosurg [Internet]. 2010 [cited 2018 Dec 19];32(3):1–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28316357.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hutchison WD, Lozano AM, Davis KD, Saint-Cyr JA, Lang AE, Dostrovsky JO. Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport [Internet]. 1994 [cited 2018 Oct 31];5(12):1533–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7948856.PubMedCrossRefGoogle Scholar
  28. 28.
    Shils J, Arle J. Neurophysiologic monitoring for movement disorders surgery. In: Winn H, editor. Youman’s neurological surgery. 7th ed. Philadelphia: Elsevier; 2016. p. 654–76.Google Scholar
  29. 29.
    Taha JM, Favre J, Baumann TK, Burchiel KJ. Characteristics and somatotopic organization of kinesthetic cells in the globus pallidus of patients with Parkinson’s disease. J Neurosurg [Internet]. 1996 [cited 2018 Nov 14];85(6):1005–12. Available from: http://thejns.org/doi/10.3171/jns.1996.85.6.1005.PubMedCrossRefGoogle Scholar
  30. 30.
    Hamani C, Schwalb J, Hutchinson W, Lozano A. Microelectrode-guided pallidotomy. In: Starr PA, Barbaro N, Larson P, editors. Neurosurgical operative atlas: functional neurosurgery. 2nd ed. New York: Thieme; 2009.Google Scholar
  31. 31.
    Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med [Internet]. 2010 [cited 2018 Dec 14];362(22):2077–91. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0907083.
  32. 32.
    Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol [Internet]. 2005 [cited 2018 Dec 14];62(4):554. Available from: http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.62.4.554.
  33. 33.
    Okun MS, Wu SS, Fayad S, Ward H, Bowers D, Rosado C, et al. Acute and chronic mood and apathy outcomes from a randomized study of unilateral STN and GPi DBS. PLoS One. 2014;9(12):1–16.CrossRefGoogle Scholar
  34. 34.
    Temel Y, Wilbrink P, Duits A, Boon P, Tromp S, Ackermans L, et al. Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. Oper Neurosurg [Internet]. 2007 [cited 2018 Nov 11];61(5 Suppl 2):346–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18091250.
  35. 35.
    Bjerknes S, Toft M, Konglund AE, Pham U, Waage TR, Pedersen L, et al. Multiple microelectrode recordings in STN-DBS surgery for Parkinson’s disease: a randomized study. Mov Disord Clin Pract. 2018;5(3):296–305.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kutz S, Bakay R. Thalamotomy for tremor. In: Starr PA, Barbaro N, Larson PS, editors. Neurosurgical operative atlas: functional neurosurgery. 2nd ed. New York: Thieme; 2009.Google Scholar
  37. 37.
    Hutchinson W, Dostrovsky J, Hodaie M, Cavis K, Lozano A, Tasker R. Microelectrode recoding in functional neurosurgery. In: Lozano A, Gildernberg P, Tasker R, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer; 2009. p. 1283–323.CrossRefGoogle Scholar
  38. 38.
    Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT. Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol [Internet]. 1988;59(2):299–316. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3351564.CrossRefGoogle Scholar
  39. 39.
    Lenz F, Kwan HC, Martin R, Tasker R, Dostrovsky J, Lenz YE. Single unit analysis of the human ventral thalamic nuclear group: tremor-related activity in fucntionally identified cells. Brain. 1994;117:531–43.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT. Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol [Internet]. 1988 [cited 2018 Oct 31];59(2):299–316. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3351564.PubMedCrossRefGoogle Scholar
  41. 41.
    Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci [Internet]. 2000;20(20):7766–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11027240.CrossRefGoogle Scholar
  42. 42.
    Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR, Murphy JT, Lenz YE. Single unit analysis of the human ventral thalamic nuclear group. Activity correlated with movement. Brain [Internet]. 1990 [cited 2018 Oct 31];113(Pt 6):1795–821. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2276045.PubMedCrossRefGoogle Scholar
  43. 43.
    Lenz FA, Kwan HC, Martin R, Tasker R, Richardson RT, Dostrovsky JO. Characteristics of somatotopic organization and spontaneous neuronal activity in the region of the thalamic principal sensory nucleus in patients with spinal cord transection. J Neurophysiol [Internet]. 1994 [cited 2018 Oct 31];72(4):1570–87. Available from: http://www.physiology.org/doi/10.1152/jn.1994.72.4.1570.PubMedCrossRefGoogle Scholar
  44. 44.
    Dostrovsky JO, Sher GD, Davis KD, Parrent AG, Hutchison WD, Tasker RR. Microinjection of lidocaine into human thalamus: a useful tool in stereotactic surgery. Stereotact Funct Neurosurg [Internet]. 1993 [cited 2018 Dec 14];60(4):168–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8327796.PubMedCrossRefGoogle Scholar
  45. 45.
    Jones MW, Tasker RR. The relationship of documented destruction of specific cell types to complications and effectiveness in thalamotomy for tremor in Parkinson’s disease. Stereotact Funct Neurosurg [Internet]. 1990 [cited 2018 Oct 31];54(1–8):207–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2080337.PubMedCrossRefGoogle Scholar
  46. 46.
    Fiegele T, Feuchtner G, Sohm F, Bauer R, Anton JV, Gotwald T, et al. Accuracy of stereotactic electrode placement in deep brain stimulation by intraoperative computed tomography. Parkinsonism Relat Disord [Internet]. 2008 [cited 2018 Nov 14];14(8):595–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1353802008000308.CrossRefGoogle Scholar
  47. 47.
    Kelman C, Ramakrishnan V, Davies A, Holloway K. Analysis of stereotactic accuracy of the cosman-robert-wells frame and nexframe frameless systems in deep brain stimulation surgery. Stereotact Funct Neurosurg [Internet]. 2010 [cited 2018 Nov 14];88(5):288–95. Available from: https://www.karger.com/Article/FullText/316761.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee PS, Weiner GM, Corson D, Kappel J, Chang YF, Suski VR, et al. Outcomes of interventional-MRI versus microelectrode recording-guided subthalamic deep brain stimulation. Front Neurol. 2018;9(APR):1–8.Google Scholar
  49. 49.
    Nowacki A, Debove I, Fiechter M, Rossi F, Oertel MF, Wiest R, et al. Targeting accuracy of the subthalamic nucleus in deep brain stimulation surgery: comparison between 3 T T2-weighted magnetic resonance imaging and microelectrode recording resultEs. Oper Neurosurg (Hagerstown, Md) [Internet]. 2018 [cited 2018 Nov 14];15(1):66–71. Available from: https://academic.oup.com/ons/article/15/1/66/4060570.CrossRefGoogle Scholar
  50. 50.
    Brahimaj B, Kochanski RB, Sani S. Microelectrode accuracy in deep brain stimulation surgery. J Clin Neurosci [Internet]. 2018 [cited 2018 Nov 14];50:58–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0967586817312377.
  51. 51.
    Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg [Internet]. 2010 [cited 2018 Nov 14];112(3):479–90. Available from: http://thejns.org/doi/10.3171/2009.6.JNS081161.
  52. 52.
    Saleh S, Swanson KI, Lake WB, Sillay KA. Awake neurophysiologically guided versus asleep MRI-guided STN DBS for Parkinson disease: a comparison of outcomes using levodopa equivalents. Stereotact Funct Neurosurg [Internet]. 2015 [cited 2018 Nov 14];93(6):419–26. Available from: https://www.karger.com/Article/FullText/442425.PubMedCrossRefGoogle Scholar
  53. 53.
    Brodsky MA, Anderson S, Murchison C, Seier M, Wilhelm J, Vederman A, et al. Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology [Internet]. 2017 [cited 2018 Nov 14];89(19):1944–50. Available from: http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000004630.CrossRefGoogle Scholar
  54. 54.
    Ho AL, Ali R, Connolly ID, Henderson JM, Dhall R, Stein SC, et al. Awake versus asleep deep brain stimulation for Parkinson’s disease: a critical comparison and meta-analysis. J Neurol Neurosurg Psychiatry [Internet]. 2018 [cited 2018 Nov 14];89(7):687–91. Available from: http://jnnp.bmj.com/lookup/doi/10.1136/jnnp-2016-314500.
  55. 55.
    Wang SY, Aziz TZ, Stein JF, Liu X. Time-frequency analysis of transient neuromuscular events: dynamic changes in activity of the subthalamic nucleus and forearm muscles related to the intermittent resting tremor. J Neurosci Methods. 2005;145(1–2):151–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Bakstein E, Burgess J, Warwick K, Ruiz V, Aziz T, Stein J. Parkinsonian tremor identification with multiple local field potential feature classification. J Neurosci Methods [Internet]. 2012;209(2):320–30. Available from:  https://doi.org/10.1016/j.jneumeth.2012.06.027.PubMedCrossRefGoogle Scholar
  57. 57.
    Kühn AA, Williams D, Kupsch A, Limousin P, Hariz M, Schneider G-H, et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain [Internet]. 2004 [cited 2018 Nov 7];127(Pt 4):735–46. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awh106.PubMedCrossRefGoogle Scholar
  58. 58.
    Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord [Internet]. 2003 [cited 2018 Nov 7];18(4):357–63. Available from: http://doi.wiley.com/10.1002/mds.10358.PubMedCrossRefGoogle Scholar
  59. 59.
    Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol [Internet]. 2006;96(6):3248–56. Available from: http://jn.physiology.org/cgi/doi/10.1152/jn.00697.2006.CrossRefGoogle Scholar
  60. 60.
    Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z. Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain. 2010;133(7):2007–21.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Feingold J, Gibson DJ, DePasquale B, Graybiel AM. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc Natl Acad Sci [Internet]. 2015;112(44):13687–92. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1517629112.CrossRefGoogle Scholar
  62. 62.
    Tinkhauser G, Pogosyan A, Tan H, Herz DM, Kühn AA, Brown P. Beta burst dynamics in Parkinson’s disease off and on dopaminergic medication. Brain. 2017;140(11):2968–81.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci [Internet]. 2001;21 [cited 2018 Dec 14]. Available from: http://www.jneurosci.org/content/jneuro/21/3/1033.full.pdf.
  64. 64.
    Brown P, Williams D. Basal ganglia local field potential activity: Character and functional significance in the human. Clin Neurophysiol [Internet]. 2005 [cited 2018 Dec 14];116(11):2510–9. Available from: https://www.sciencedirect.com/science/article/pii/S1388245705002142?via%3Dihub.PubMedCrossRefGoogle Scholar
  65. 65.
    Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci [Internet]. 2009 [cited 2012 Mar 10];29(43):13613–20. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3001247&tool=pmcentrez&rendertype=abstract.
  66. 66.
    de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A [Internet]. 2013 [cited 2014 May 27];110(12):4780–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3606991&tool=pmcentrez&rendertype=abstract.
  67. 67.
    de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci [Internet]. 2015;18(5):779–86. Available from:  https://doi.org/10.1038/nn.3997.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Marsden JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P. Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain [Internet]. 2000 [cited 2018 Dec 14];123(Pt 7:1459–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10869057.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang DD, de Hemptinne C, Miocinovic S, Ostrem JL, Galifianakis NB, San Luciano M, et al. Pallidal deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson’s disease. J Neurosci [Internet]. 2018;38(19):4556–68. Available from: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0431-18.2018.CrossRefGoogle Scholar
  70. 70.
    Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008;453(7198):1098–101.PubMedCrossRefGoogle Scholar
  71. 71.
    Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet [Internet]. 2013 [cited 2014 Jan 26];381(9866):557–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23253623.CrossRefGoogle Scholar
  72. 72.
    Nicolelis MA, Lebedev MA. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci [Internet]. 2009;10(7):530–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19543222.PubMedCrossRefGoogle Scholar
  73. 73.
    O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, et al. Active tactile exploration using a brain–machine–brain interface. Nature [Internet]. 2011 [cited 2018 Dec 18];479(7372):228–31. Available from: http://www.nature.com/articles/nature10489.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Shanechi M, Rollin R, Powers M, Wornell G, Brown E, Williams Z. Neural population partitioning and a concurrent brain-machine interface for sequential motor function. Nat Neurosciu. 2012;15(12):1–23.Google Scholar
  75. 75.
    Kundu B, Brock AA, Englot DJ, Butson CR, Rolston JD. Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review. Neurosurg Focus. 2018;45(August):1–8.Google Scholar
  76. 76.
    Engel AK, Moll CKE, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci [Internet]. 2005 [cited 2014 Jul 19];6(1):35–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15611725.
  77. 77.
    Canolty RT, Ganguly K, Kennerley SW, Cadieu CF, Koepsell K, Wallis JD, et al. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc Natl Acad Sci [Internet]. 2010;107(40):17356–61. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1008306107.CrossRefGoogle Scholar
  78. 78.
    Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron [Internet]. 2011 [cited 2013 Jan 30];69(2):387–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21262474.PubMedCrossRefGoogle Scholar
  79. 79.
    Kreiman G, Koch C, Fried I. Imagery neurons in the human brain. Nature [Internet]. 2000;408(6810):357–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11099042.CrossRefGoogle Scholar
  80. 80.
    Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012;488(7410):218–21.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kamiński J, Sullivan S, Chung JM, Ross IB, Mamelak AN, Rutishauser U. Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat Neurosci. 2017;20(4):590–601.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ezzyat Y, Kragel JE, Burke JF, Levy DF, Lyalenko A, Wanda P, et al. Direct brain stimulation modulates encoding states and memory performance in humans. Curr Biol [Internet]. 2017;27(9):1251–8. Available from:  https://doi.org/10.1016/j.cub.2017.03.028.PubMedCrossRefGoogle Scholar
  83. 83.
    Ojemann GA, Dodrill CB. Verbal memory deficits after left temporal lobectomy for epilepsy. Mechanism and intraoperative prediction. J Neurosurg [Internet]. 1985;62(1):101–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3964840.CrossRefGoogle Scholar
  84. 84.
    Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD. Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat Neurosci [Internet]. 2013 [cited 2014 Jul 11];16(3):349–56. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3581758&tool=pmcentrez&rendertype=abstract.
  85. 85.
    Mukamel R, Fried I. Human intracranial recordings and cognitive neuroscience. Annu Rev Psychol [Internet]. 2012;63(1):511–37. Available from: http://www.annualreviews.org/doi/10.1146/annurev-psych-120709-145401.CrossRefGoogle Scholar
  86. 86.
    Neumann WJ, Huebl J, Brücke C, Gabriëls L, Bajbouj M, Merkl A, et al. Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder. Mol Psychiatry. 2014;19(11):1186–92.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Dyster TG, Mikell CB, Sheth SA. The co-evolution of neuroimaging and psychiatric neurosurgery. Front Neuroanat [Internet]. 2016;10(June):1–12. Available from: http://journal.frontiersin.org/Article/10.3389/fnana.2016.00068/abstract.Google Scholar
  88. 88.
    Cash SS, Hochberg LR. The emergence of single neurons in clinical neurology. Neuron [Internet]. 2015;86(1):79–91. Available from:  https://doi.org/10.1016/j.neuron.2015.03.058.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Smith EH, Liou J-Y, Davis TS, Merricks EM, Kellis SS, Weiss SA, et al. The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nat Commun [Internet]. 2016;7:11098. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84962683987&partnerID=tZOtx3y1.CrossRefGoogle Scholar
  90. 90.
    Weiss SA, Banks GP, McKhann GM, Goodman RR, Emerson RG, Trevelyan AJ, et al. Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain [Internet]. 2013 [cited 2018 Dec 18];136(12):3796–808. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awt276.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bornali Kundu
    • 1
  • Andrea A. Brock
    • 1
  • John A. Thompson
    • 2
  • John D. Rolston
    • 1
    • 3
    Email author
  1. 1.Department of Neurosurgery, Clinical Neurosciences CenterUniversity of UtahSalt Lake CityUSA
  2. 2.Department of NeurosurgeryUniversity of Colorado School of MedicineAuroraUSA
  3. 3.Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations