Principles of Safe Stereotactic Trajectories

  • Rushna Ali
  • Ellen L. AirEmail author


Stereotactic planning plays a pivotal role in various neurosurgical procedures including deep brain stimulation (DBS), depth electrode placement, and stereoencephalography (sEEG) for intracranial monitoring in patients with epilepsy, responsive neurostimulation (RNS), laser interstitial thermal therapy (LITT), and biopsies. Presurgical planning is essential to success. This requires a thorough knowledge of clinical presentation, medical history, risk factors, results of preoperative studies, and possible benefits and hazards of surgery. Integration of this knowledge with an understanding of key principles of trajectory planning allows for deep structures of the brain to be approached safely.


Trajectory Complication avoidance Accuracy Anticoagulation Image registration 


  1. 1.
    Clarke RH, Horsley V. THE CLASSIC: On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Br Med J. 1906;1799–1800.Google Scholar
  2. 2.
    Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Guiot G, Hardy J, Albe-Fessard D. Precise delimitation of the subcortical structures and identification of thalamic nuclei in man by stereotactic electrophysiology. Neurochirurgia (Stuttg). 1962;5:1–18.Google Scholar
  4. 4.
    Zrinzo LU, Hariz MI. Recording in functional neurosurgery. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer; 2009. p. 1325–30.CrossRefGoogle Scholar
  5. 5.
    Krüger MT, Coenen VA, Jenkner C, Urbach H, Egger K, Reinacher PC. Combination of CT angiography and MRI in surgical planning of deep brain stimulation. Neuroradiology. 2018;60(11):1151–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ben-Haim S, Asaad WF, Gale JT, Eskandar EN. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery. 2009;64(4):754–62; discussion 762–3.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Baron TH, Kamath PS, McBane RD. Management of antithrombotic therapy in patients undergoing invasive procedures. N Engl J Med. 2013;368(22):2113–24.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hornor MA, Duane TM, Ehlers AP, Jensen EH, Brown PS, Pohl D, et al. American College of Surgeons’ Guidelines for the Perioperative Management of Antithrombotic Medication. J Am Coll Surg. 2018;227(5):521–536.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Douketis JD, Spyropoulos AC, Spencer FA, Mayr M, Jaffer AK, Eckman MH, et al. Perioperative management of antithrombotic therapy: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2suppl):e326–50.CrossRefGoogle Scholar
  11. 11.
    Doherty JU, Gluckman TJ, Hucker WJ, Januzzi JL, Ortel TL, Saxonhouse SJ, et al. 2017 ACC expert consensus decision pathway for periprocedural management of anticoagulation in patients with nonvalvular atrial fibrillation: a report of the American College of Cardiology Clinical Expert Consensus Document Task Force. J Am Coll Cardiol. 2017;69:871–98.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149:315–52.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. 2014 ACC/ AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:77–137.CrossRefGoogle Scholar
  14. 14.
    Roth A, Buttrick SS, Cajigas I, Jagid JR, Ivan ME. Accuracy of frame-based and frameless systems for deep brain stimulation: a meta-analysis. J Clin Neurosci. 2018;57:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mavridis I, Boviatsis E, Anagnostopoulou S. Anatomy of the human subthalamic nucleus: a combined morphometric study. Anat Res Int. 2013;2013:319710.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Walton L, Hampshire A, Forster DM, Kemeny AA. Stereotactic localization with magnetic resonance imaging: a phantom study to compare the accuracy obtained using two-dimensional and three-dimensional data acquisitions. Neurosurgery. 1997;41(1):131–7; discussion 137–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sumanaweera TS, Glover GH, Hemler PF, van den Elsen PA, Martin D, Adler JR, Napel S. MR geometric distortion correction for improved frame-based stereotaxic target localization accuracy. Magn Reson Med. 1995;34(1):106–13.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sumanaweera TS, Adler JR Jr, Napel S, Glover GH. Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery. 1994;35(4):696–703; discussion 703–4.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67(6):1745–56.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bucholz RD, Ho HW, Rubin JP. Variables affecting the accuracy of stereotactic localization using computerized tomography. J Neurosurg. 1993;79(5):667–73.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Nowell M, Rodionov R, Diehl B, Wehner T, Zombori G, Kinghorn J, et al. A novel method for implementation of frameless StereoEEG in epilepsy surgery. Neurosurgery. 2014;10:525–34.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gilard V, Proust F, Gerardin E, Lebas A, Chastan N, Fréger P, et al. Usefulness of multidetector-row computerized tomographic angiography for the surgical planning in stereoelectroencephalography. Diagn Interv Imaging. 2016;97:333–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sato S, Dan M, Hata H, Miyasaka K, Hanihara M, Shibahara I, et al. Safe stereotactic biopsy for basal ganglia lesions: avoiding injury to the basal perforating arteries. Stereotact Funct Neurosurg. 2018;96(4):244–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Yu C, Petrovich Z, Apuzzo ML, Luxton G. An image fusion study of the geometric accuracy of magnetic resonance imaging with the Leksell stereotactic localization system. J Appl Clin Med Phys. 2001;2(1):42–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sankar T, Lozano AM. Magnetic resonance imaging distortion in functional neurosurgery. World Neurosurg. 2011;75:29–31.CrossRefGoogle Scholar
  26. 26.
    O’Gorman RL, Jarosz JM, Samuel M, Clough C, Selway RP, Ashkan K. CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation. Stereotact Funct Neurosurg. 2009;87(4):205–10.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Elias WJ, Sansur CA, Frysinger RC. Sulcal and ventricular trajectories in stereotactic surgery. J Neurosurg. 2009;110(2):201–7.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, et al. Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg. 2009;110(6):1283–90.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Khan MF, Mewes K, Gross RE, Skrinjar O. Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg. 2008;86(1):44–53.CrossRefGoogle Scholar
  30. 30.
    Lehtimäki K, Coenen VA, Gonçalves Ferreira A, Boon P, Elger C, Taylor RS, et al. The surgical approach to the anterior nucleus of thalamus in patients with refractory epilepsy: experience from the International Multicenter Registry (MORE). Neurosurgery. 2019;84(1):141–50.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Khan S, Javed S, Park N, Gill SS, Patel NK. A magnetic resonance imaging-directed method for transventricular targeting of midline structures for deep brain stimulation using implantable guide tubes. Neurosurgery. 2010;66(6 Suppl Operative):234–7; discussion 237.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Reinges MH, Krings T, Nguyen HH, Hans FJ, Korinth MC, Holler M, et al. Is the head position during preoperative image data acquisition essential for the accuracy of navigated brain tumor surgery? Comput Aided Surg. 2000;5(6):426–32.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Marmulla R, Mühling J, Lüth T, Hassfeld S. Physiological shift of facial skin and its influence on the change in precision of computer-assisted surgery. Br J Oral Maxillofac Surg. 2006;44(4):273–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Smith TR, Mithal DS, Stadler JA, Asgarian C, Muro K, Rosenow JM. Impact of fiducial arrangement and registration sequence on target accuracy using a phantom frameless stereotactic navigation model. J Clin Neurosci. 2014;21(11):1976–80.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Rohlfing T, Maurer CR Jr, Dean D, Maciunas RJ. Effect of changing patient position from supine to prone on the accuracy of a Brown-Roberts-Wells stereotactic head frame system. Neurosurgery. 2003;52(3):610–8; discussion 617–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zhou C, Anschuetz L, Weder S, Xie L, Caversaccio M, Weber S. Surface matching for high-accuracy registration of the lateral skull base. Int J Comput Assist Radiol Surg. 2016;11(11):2097–103.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Salma A, Makiese O, Sammet S, Ammirati M. Effect of registration mode on neuronavigation precision: an exploration of the role of random error. Comput Aided Surg. 2012;17(4):172–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ammirati M, Gross JD, Ammirati G, Dugan S. Comparison of registration accuracy of skin- and bone-implanted fiducials for frameless stereotaxis of the brain: a prospective study. Skull Base. 2002;12(3):125–30.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Alterman RL, Sterio D, Beric A, Kelly PJ. Microelectrode recording during posteroventral pallidotomy: impact on target selection and complications. Neurosurgery. 1999;44:315–23.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rezai AR, Kopell BH, Gross RE, Vitek JL, Sharan AD, Limousin P, Benabid AL. Deep brain stimulation for Parkinson’s disease: surgical issues. Mov Disord. 2006;21(Suppl 14):197–218.CrossRefGoogle Scholar
  41. 41.
    Palur RS, Berk C, Schulzer M, Honey CR. A metaanalysis comparing the results of pallidotomy performed using microelectrode recording or macroelectrode stimulation. J Neurosurg. 2002;96:1058–62.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hariz MI, Fodstad H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg. 1999;72:157–69.CrossRefGoogle Scholar
  43. 43.
    Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–32.CrossRefGoogle Scholar
  44. 44.
    Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE. The Deep-Brain Stimulation for Parkinson’s Disease Study Group: Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345:956–63.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mattei TA, Rodriguez AH, Sambhara D, Mendel E. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev. 2014;37:357–66.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lefranc M, Le Gars D. Robotic implantation of deep brain stimulation leads, assisted by intra-operative, flat-panel CT. Acta Neurochir. 2012;154:2069–74.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Amundson EW, McGirt MJ, Olivi A. A contralateral, transfrontal, extraventricular approach to stereotactic brainstem biopsy procedures. Technical note. J Neurosurg. 2005;102(3):565–70.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gonçalves-Ferreira AJ, Herculano-Carvalho M, Pimentel J. Stereotactic biopsies of focal brainstem lesions. Surg Neurol. 2003;60(4):311–20.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Dellaretti M, Reyns N, Touzet G, Dubois F, Gusmão S, Pereira JL, et al. Stereotactic biopsy for brainstem tumors: comparison of transcerebellar with transfrontal approach. Stereotact Funct Neurosurg. 2012;90(2):79–83.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Restorative and Functional Neurosurgery, Division of NeurosurgerySpectrum Health Medical GroupGrand RapidsUSA
  2. 2.Functional Neurosurgery, Department of NeurosurgeryHenry Ford Health SystemDetroitUSA

Personalised recommendations