Advertisement

Frameless Image Guidance in Stereotactic Radiosurgery

  • Nzhde Agazaryan
  • Stephen Tenn
  • Sonja Dieterich
  • Thierry Gevaert
  • Steven J. Goetsch
  • Tania Kaprealian
Chapter
  • 92 Downloads

Abstract

Stereotactic accuracy and target engagement largely rely on rigid immobilization of the skull. However, advanced imaging, image reconstructions, and adaptive treatment algorithms have made frameless image guidance without rigid immobilization a mainstay of stereotactic radiosurgery and radiotherapy deliveries. While these methods for achieving stereotactic precision require some immobilization, these obviate the need for an invasive head ring fixation. Because these approaches allow the target to still move to some degree and this movement must be compensated for, frameless image guidance requires intra-treatment imaging and target tracking and, critically, requires verification of accuracy. In this chapter, the different approaches are described, including key technological features of various frameless image-guided approaches. The anticipation is that these methods, which are primarily used for stereotactic radiosurgery, will continue to evolve to incorporate other imaging modalities, such as MRI, and eventually be generalized to other stereotactic procedures.

Keywords

Radiosurgery Stereotactic SRS Stereotaxy Frameless Image guidance IGRT Functional 

References

  1. 1.
    Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry. 1983;46(9):797–803.CrossRefGoogle Scholar
  2. 2.
    Verhey LJ, Goitein M, McNulty P, Munzenrider JE, Suit HD. Precise positioning of patients for radiation therapy. Int J Radiat Oncol Biol Phys. 1982;8(2):289–94.CrossRefGoogle Scholar
  3. 3.
    Adler JR, Murphy MJ, Chang SD, Hancock SL. Image-guided robotic radiosurgery. Neurosurgery. 1999;44(6):1299–306.PubMedGoogle Scholar
  4. 4.
    Fu DS, Kuduvalli G. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery. Med Phys. 2008;35(5):2180–94.CrossRefGoogle Scholar
  5. 5.
    Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002;29(3):334–44.CrossRefGoogle Scholar
  6. 6.
    West JB, Fitzpatrick JM, Toms SA, Maurer CR Jr, Maciunas RJ. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48(4):810–6; discussion 6–7.PubMedGoogle Scholar
  7. 7.
    Fu D, Kuduvalli G, Maurer CR, Allision JW, Adler JR. 3D target localization using 2D local displacements of skeletal structures in orthogonal X-ray images for image-guided spinal radiosurgery. Int J Comput Assist Radiol Surg. 2006;1:198–200.Google Scholar
  8. 8.
    Murphy MJ, Chang SD, Gibbs IC, Le QT, Hai J, Kim D, et al. Patterns of patient movement during frameless image-guided radiosurgery. Int J Radiat Oncol Biol Phys. 2003;55(5):1400–8.CrossRefGoogle Scholar
  9. 9.
    Ryken TC, Meeks SL, Pennington EC, Hitchon P, Traynelis V, Mayr NA, et al. Initial clinical experience with frameless stereotactic radiosurgery: analysis of accuracy and feasibility. Int J Radiat Oncol Biol Phys. 2001;51(4):1152–8.CrossRefGoogle Scholar
  10. 10.
    Chang SD, Main W, Martin DP, Gibbs IC, Heilbrun MP. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery. 2003;52(1):140–6; discussion 6–7.PubMedGoogle Scholar
  11. 11.
    Gevaert T, Verellen D, Engels B, Depuydt T, Heuninckx K, Tournel K, et al. Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiosurgery. Int J Radiat Oncol Biol Phys. 2012;83(1):467–74.CrossRefGoogle Scholar
  12. 12.
    Verellen D, Soete G, Linthout N, Van Acker S, De Roover P, Vinh-Hung V, et al. Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging. Radiother Oncol. 2003;67(1):129–41.CrossRefGoogle Scholar
  13. 13.
    Yan H, Yin FF, Kim JH. A phantom study on the positioning accuracy of the Novalis Body system. Med Phys. 2003;30(12):3052–60.CrossRefGoogle Scholar
  14. 14.
    Groh BA, Siewerdsen JH, Drake DG, Wong JW, Jaffray DA. A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys. 2002;29(6):967–75.CrossRefGoogle Scholar
  15. 15.
    Thilmann C, Nill S, Tucking T, Hoss A, Hesse B, Dietrich L, et al. Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences. Radiat Oncol. 2006;1:16.CrossRefGoogle Scholar
  16. 16.
    Gevaert T, Verellen D, Tournel K, Linthout N, Bral S, Engels B, et al. Setup accuracy of the Novalis ExacTrac 6DOF system for frameless radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82(5):1627–35.CrossRefGoogle Scholar
  17. 17.
    Jin JY, Yin FF, Tenn SE, Medin PM, Solberg TD. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy. Med Dosim. 2008;33(2):124–34.CrossRefGoogle Scholar
  18. 18.
    Agazaryan N, Tenn SE, Desalles AA, Selch MT. Image-guided radiosurgery for spinal tumors: methods, accuracy and patient intrafraction motion. Phys Med Biol. 2008;53(6):1715–27.CrossRefGoogle Scholar
  19. 19.
    Zhang L, Garden AS, Lo J, Ang KK, Ahamad A, Morrison WH, et al. Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006;64(5):1559–69.CrossRefGoogle Scholar
  20. 20.
    Murphy MJ. The importance of computed tomography slice thickness in radiographic patient positioning for radiosurgery. Med Phys. 1999;26(2):171–5.CrossRefGoogle Scholar
  21. 21.
    Oldham M, Letourneau D, Watt L, Hugo G, Yan D, Lockman D, et al. Cone-beam-CT guided radiation therapy: a model for on-line application. Radiother Oncol. 2005;75(3):271–8.CrossRefGoogle Scholar
  22. 22.
    van Herk M. Different styles of image-guided radiotherapy. Semin Radiat Oncol. 2007;17(4):258–67.CrossRefGoogle Scholar
  23. 23.
    Verellen D, De Ridder M, Tournel K, Duchateau M, Reynders T, Gevaert T, et al. An overview of volumetric imaging technologies and their quality assurance for IGRT. Acta Oncol. 2008;47(7):1271–8.CrossRefGoogle Scholar
  24. 24.
    Lee SW, Jin JY, Guan H, Martin F, Kim JH, Yin FF. Clinical assessment and characterization of a dual tube kilovoltage X-ray localization system in the radiotherapy treatment room. J Appl Clin Med Phys. 2008;9(1):2318.CrossRefGoogle Scholar
  25. 25.
    Walter C, Boda-Heggemann J, Wertz H, Loeb I, Rahn A, Lohr F, et al. Phantom and in-vivo measurements of dose exposure by image-guided radiotherapy (IGRT): MV portal images vs. kV portal images vs. cone-beam CT. Radiother Oncol. 2007;85(3):418–23.CrossRefGoogle Scholar
  26. 26.
    Ma J, Chang Z, Wang Z, Jackie Wu Q, Kirkpatrick JP, Yin FF. ExacTrac X-ray 6 degree-of-freedom image-guidance for intracranial non-invasive stereotactic radiotherapy: comparison with kilo-voltage cone-beam CT. Radiother Oncol. 2009;93(3):602–8.CrossRefGoogle Scholar
  27. 27.
    Rahimian J, Chen JC, Rao AA, Girvigian MR, Miller MJ, Greathouse HE. Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia. J Neurosurg. 2004;101 Suppl 3:351–5.CrossRefGoogle Scholar
  28. 28.
    Hoogeman MS, Nuyttens JJ, Levendag PC, Heijmen BJ. Time dependence of intrafraction patient motion assessed by repeat stereoscopic imaging. Int J Radiat Oncol Biol Phys. 2008;70(2):609–18.CrossRefGoogle Scholar
  29. 29.
    Gevaert T, Boussaer M, Engels B, Litre CF, Prieur A, Wdowczyk D, et al. Evaluation of the clinical usefulness for using verification images during frameless radiosurgery. Radiother Oncol. 2013;108(1):114–7.CrossRefGoogle Scholar
  30. 30.
    Cervino LI, Detorie N, Taylor M, Lawson JD, Harry T, Murphy KT, et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012;2(1):54–62.CrossRefGoogle Scholar
  31. 31.
    Mancosu P, Fogliata A, Stravato A, Tomatis S, Cozzi L, Scorsetti M. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016;41(2):173–9.CrossRefGoogle Scholar
  32. 32.
    Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.PubMedGoogle Scholar
  33. 33.
    Wu A, Lindner G, Maitz AH, Kalend AM, Lunsford LD, Flickinger JC, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1990;18(4):941–9.CrossRefGoogle Scholar
  34. 34.
    Lindquist C, Paddick I. The Leksell Gamma Knife Perfexion and comparisons with its predecessors. Neurosurgery. 2007;61(3 Suppl):130–40; discussion 40–1.PubMedGoogle Scholar
  35. 35.
    Zeverino M, Jaccard M, Patin D, Ryckx N, Marguet M, Tuleasca C, et al. Commissioning of the Leksell Gamma Knife((R)) Icon. Med Phys. 2017;44(2):355–63.CrossRefGoogle Scholar
  36. 36.
    Ruschin M, Komljenovic PT, Ansell S, Menard C, Bootsma G, Cho YB, et al. Cone beam computed tomography image guidance system for a dedicated intracranial radiosurgery treatment unit. Int J Radiat Oncol Biol Phys. 2013;85(1):243–50.CrossRefGoogle Scholar
  37. 37.
    AlDahlawi I, Prasad D, Podgorsak MB. Evaluation of stability of stereotactic space defined by cone-beam CT for the Leksell Gamma Knife Icon. J Appl Clin Med Phys. 2017;18(3):67–72.CrossRefGoogle Scholar
  38. 38.
    Chung HT, Park WY, Kim TH, Kim YK, Chun KJ. Assessment of the accuracy and stability of frameless gamma knife radiosurgery. J Appl Clin Med Phys. 2018;19(4):148–54.CrossRefGoogle Scholar
  39. 39.
    Leksell Gamma Knife Perfexion and Leksell Gamma Knife Icon Licensing Guidance. In: Commission UNR, editor. Bethesda, MD; 2016.Google Scholar
  40. 40.
    Chung HT, Kim JH, Kim JW, Paek SH, Kim DG, Chun KJ, et al. Assessment of image co-registration accuracy for frameless gamma knife surgery. PLoS One. 2018 Mar 2;13(3):e0193809.CrossRefGoogle Scholar
  41. 41.
    Reiner B, Bownes P, Buckley DL, Thwaites DI. Quantifying the effects of positional uncertainties and estimating margins for Gamma-Knife fractionated radiosurgery of large brain metastases. J Radiosurg SBRT. 2017;4(4):275–87.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nzhde Agazaryan
    • 1
  • Stephen Tenn
    • 1
  • Sonja Dieterich
    • 2
  • Thierry Gevaert
    • 3
    • 4
  • Steven J. Goetsch
    • 5
  • Tania Kaprealian
    • 1
  1. 1.Department of Radiation OncologyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of Radiation OncologyUniversity of California DavisSacramentoUSA
  3. 3.Department of RadiotherapyUniversitair Ziekenhuis Brussel (UZB)BrusselsBelgium
  4. 4.Vrije Universiteit Brussel (VUB)BrusselsBelgium
  5. 5.Medical Physics, San Diego Gamma Knife CenterLa JollaUSA

Personalised recommendations