Advertisement

The Design of Clinical Studies for Neuromodulation

  • Wael F. AsaadEmail author
  • Peter M. Lauro
  • Shane Lee
Chapter
  • 114 Downloads

Abstract

Creating successful new neuromodulation therapies requires innovative trial design and the balancing of a wide variety of complex factors. The ultimate goal is to advance our ability to restore appropriate brain function through the targeted manipulation of neural circuits and, to this end, clinical trials should be just as informative in failure as they are in success. Some aspects of neuromodulation trials are common to all clinical studies, while other aspects are fairly specific to invasive neurosurgical interventions for complex neurological and psychiatric disease. This chapter examines the major factors to be considered in constructing clinical studies to investigate the various forms and applications of novel neuromodulation strategies.

Keywords

Neuromodulation Deep brain stimulation Neurostimulation Lesion Focused ultrasound Clinical trials Trial design 

References

  1. 1.
    Teskey GC, Monfils MH, VandenBerg PM, Kleim JA. Motor map expansion following repeated cortical and limbic seizures is related to synaptic potentiation. Cereb Cortex. 2002;12:98–105.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    van Rooyen F, Young NA, Larson SE, Teskey GC. Hippocampal kindling leads to motor map expansion. Epilepsia. 2006;47:1383–91.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kupsch A, Benecke R, Muller J, Trottenberg T, Schneider GH, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355:1978–90.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Odekerken VJJ, van Laar T, Staal MJ, Mosch A, Hoffmann CFE, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Weaver FM, Follett K, Stern M, Hur K, Harris C, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Follett KA, Weaver FM, Stern M, Hur K, Harris CL, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362:2077–91.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016;375:730–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10:309–19.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9:1164–72.CrossRefGoogle Scholar
  11. 11.
    Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59:459–66.CrossRefGoogle Scholar
  12. 12.
    Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4:839–49.CrossRefGoogle Scholar
  13. 13.
    Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT, et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol Psychiatry. 2015;78:240–8.CrossRefGoogle Scholar
  14. 14.
    Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med. 2008;359:2121–34.CrossRefGoogle Scholar
  15. 15.
    Lopes AC, Greenberg BD, Canteras MM, Batistuzzo MC, Hoexter MQ, et al. Gamma ventral capsulotomy for obsessive-compulsive disorder: a randomized clinical trial. JAMA Psychiat. 2014;71:1066–76.CrossRefGoogle Scholar
  16. 16.
    Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54:777–87.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry. 2010;67:1061–8.CrossRefGoogle Scholar
  18. 18.
    Bergfeld IO, Mantione M, Hoogendoorn ML, Ruhe HG, Notten P, et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiat. 2016;73:456–64.CrossRefGoogle Scholar
  19. 19.
    Wiebe S, Blume WT, Girvin JP, Eliasziw M, Group EaEoSfTLES. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311–8.CrossRefGoogle Scholar
  20. 20.
    Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. 2014;55:432–41.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Barbaro NM, Quigg M, Ward MM, Chang EF, Broshek DK, et al. Radiosurgery versus open surgery for mesial temporal lobe epilepsy: the randomized, controlled ROSE trial. Epilepsia. 2018;59:1198–207.CrossRefGoogle Scholar
  22. 22.
    Barbaro NM, Quigg M, Broshek DK, Ward MM, Lamborn KR, et al. A multicenter, prospective pilot study of gamma knife radiosurgery for mesial temporal lobe epilepsy: seizure response, adverse events, and verbal memory. Ann Neurol. 2009;65:167–75.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fisher R, Salanova V, Witt T, Worth R, Henry T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908.CrossRefGoogle Scholar
  24. 24.
    North RB, Kidd DH, Farrokhi F, Piantadosi SA. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery. 2005;56:98–106; discussion 06–7.CrossRefGoogle Scholar
  25. 25.
    Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 2007;132:179–88.CrossRefPubMedGoogle Scholar
  26. 26.
    Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology. 2015;123:851–60.CrossRefGoogle Scholar
  27. 27.
    Penn RD, Savoy SM, Corcos D, Latash M, Gottlieb G, et al. Intrathecal baclofen for severe spinal spasticity. N Engl J Med. 1989;320:1517–21.CrossRefPubMedGoogle Scholar
  28. 28.
    Brown JA, Lutsep HL, Weinand M, Cramer SC. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery. 2006;58:464–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Broadway JM, Holtzheimer PE, Hilimire MR, Parks NA, Devylder JE, et al. Frontal theta cordance predicts 6-month antidepressant response to subcallosal cingulate deep brain stimulation for treatment-resistant depression: a pilot study. Neuropsychopharmacology. 2012;37:1764–72.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chow SC. Adaptive clinical trial design. Annu Rev Med. 2014;65:405–15.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mansournia MA, Higgins JP, Sterne JA, Hernan MA. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology. 2017;28:54–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pearl J. An introduction to causal inference. Int J Biostat. 2010;6:Article 7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Porta M, Vineis P, Bolumar F. The current deconstruction of paradoxes: one sign of the ongoing methodological “revolution”. Eur J Epidemiol. 2015;30:1079–87.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Weintraub WS, Luscher TF, Pocock S. The perils of surrogate endpoints. Eur Heart J. 2015;36:2212–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Alonso A, Van der Elst W, Molenberghs G, Buyse M, Burzykowski T. On the relationship between the causal-inference and meta-analytic paradigms for the validation of surrogate endpoints. Biometrics. 2015;71:15–24.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Molenberghs G, Burzykowski T, Alonso A, Assam P, Tilahun A, Buyse M. A unified framework for the evaluation of surrogate endpoints in mental-health clinical trials. Stat Methods Med Res. 2010;19:205–36.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Landau S, Emsley R, Dunn G. Beyond total treatment effects in randomised controlled trials: baseline measurement of intermediate outcomes needed to reduce confounding in mediation investigations. Clin Trials. 2018;15:247–56.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Probst P, Grummich K, Harnoss JC, Huttner FJ, Jensen K, et al. Placebo-controlled trials in surgery: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e3516.CrossRefGoogle Scholar
  39. 39.
    Niethammer M, Tang CC, LeWitt PA, Rezai AR, Leehey MA, et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight. 2017;2:e90133.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cohen PD, Isaacs T, Willocks P, Herman L, Stamford J, et al. Sham neurosurgical procedures: the patients’ perspective. Lancet Neurol. 2012;11:1022.CrossRefGoogle Scholar
  41. 41.
    Harary M, Segar DJ, Hayes MT, Cosgrove GR. Unilateral thalamic deep brain stimulation versus focused ultrasound thalamotomy for essential tremor. World Neurosurg, vol. 126; 2019. p. e144.Google Scholar
  42. 42.
    Leoutsakos J-MS, Yan H, Anderson WS, Asaad WF, Baltuch G, et al. Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance trial): a two year follow-up including results of delayed activation. J Alzheimers Dis. 2018;64:597–606.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bourne SK, Sheth SA, Neal J, Strong C, Mian MK, et al. Beneficial effect of subsequent lesion procedures after nonresponse to initial cingulotomy for severe, treatment-refractory obsessive-compulsive disorder. Neurosurgery. 2013;72:196–202; discussion 02.CrossRefGoogle Scholar
  44. 44.
    Bartolomei F, Lagarde S, Wendling F, McGonigal A, Jirsa V, et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia. 2017;58:1131–47.CrossRefGoogle Scholar
  45. 45.
    Bernhardt BC, Bonilha L, Gross DW. Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 2015;50:162–70.CrossRefGoogle Scholar
  46. 46.
    Laxpati NG, Kasoff WS, Gross RE. Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics. 2014;11:508–26.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43:219–27.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15:683–95.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Baizabal-Carvallo JF, Roze E, Aya-Kombo M, Romito L, Navarro S, et al. Combined pallidal and subthalamic nucleus deep brain stimulation in secondary dystonia-parkinsonism. Parkinsonism Relat Disord. 2013;19:566–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Boel JA, Odekerken VJJ, Schmand BA, Geurtsen GJ, Cath DC, et al. Cognitive and psychiatric outcome 3 years after globus pallidus pars interna or subthalamic nucleus deep brain stimulation for Parkinson’s disease. Parkinsonism Related Disord. 2016;33:90–5.CrossRefGoogle Scholar
  51. 51.
    Weaver FM, Follett KA, Stern M, Luo P, Harris CL, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79:55–65.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circuits. 2017;11:108.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13:1526–33.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lee SH, Dan Y. Neuromodulation of brain states. Neuron. 2012;76:209–22.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lin SC, Brown RE, Hussain Shuler MG, Petersen CC, Kepecs A. Optogenetic dissection of the basal forebrain neuromodulatory control of cortical activation, plasticity, and cognition. J Neurosci. 2015;35:13896–903.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, et al. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013;497(7451):585–90.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rasmussen SA, Norén G, Greenberg BD, Marsland R, McLaughlin NC, et al. Gamma ventral capsulotomy in intractable obsessive-compulsive disorder. Biol Psychiatry. 2018;84(5):355–64.CrossRefGoogle Scholar
  58. 58.
    Kartsounis LD, Poynton A, Bridges PK, Bartlett JR. Neuropsychological correlates of stereotactic subcaudate tractotomy. A prospective study. Brain. 1991;114(Pt6):2657–73.CrossRefGoogle Scholar
  59. 59.
    Nyman H, Andreewitch S, Lundback E, Mindus P. Executive and cognitive functions in patients with extreme obsessive-compulsive disorder treated by capsulotomy. Appl Neuropsychol. 2001;8:91–8.CrossRefGoogle Scholar
  60. 60.
    Ochsner KN, Kosslyn SM, Cosgrove GR, Cassem EH, Price BH, et al. Deficits in visual cognition and attention following bilateral anterior cingulotomy. Neuropsychologia. 2001;39:219–30.CrossRefPubMedGoogle Scholar
  61. 61.
    Ridout N, O’Carroll RE, Dritschel B, Christmas D, Eljamel M, Matthews K. Emotion recognition from dynamic emotional displays following anterior cingulotomy and anterior capsulotomy for chronic depression. Neuropsychologia. 2007;45:1735–43.CrossRefPubMedGoogle Scholar
  62. 62.
    Subramanian L, Bracht T, Jenkins P, Choppin S, Linden DE, et al. Clinical improvements following bilateral anterior capsulotomy in treatment-resistant depression. Psychol Med. 2017;47:1097–106.CrossRefPubMedGoogle Scholar
  63. 63.
    Williams ZM, Bush G, Rauch SL, Cosgrove GR, Eskandar EN. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat Neurosci. 2004;7:1370–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Batistuzzo MC, Hoexter MQ, Taub A, Gentil AF, Cesar RC, et al. Visuospatial memory improvement after gamma ventral capsulotomy in treatment refractory obsessive-compulsive disorder patients. Neuropsychopharmacology. 2015;40:1837–45.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Daniels C, Krack P, Volkmann J, Pinsker MO, Krause M, et al. Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord. 2010;25:1583–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23:843–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.CrossRefPubMedGoogle Scholar
  68. 68.
    Gentil AF, Lopes AC, Dougherty DD, Rück C, Mataix-Cols D, et al. Hoarding symptoms and prediction of poor response to limbic system surgery for treatment-refractory obsessive-compulsive disorder. J Neurosurg. 2014;121:123–30.CrossRefPubMedGoogle Scholar
  69. 69.
    Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Salanova V, Witt T, Worth R, Henry TR, Gross RE, et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84:1017–25.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kupsch A, Tagliati M, Vidailhet M, Aziz T, Krack P, et al. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord. 2011;26 Suppl 1:S37–53.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Rasmussen SA, Noren G, Greenberg BD, Marsland R, McLaughlin NC, et al. Gamma ventral capsulotomy in intractable obsessive-compulsive disorder. Biol Psychiatry. 2018;84:355–64.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Neurosurgery, Neuroscience, and the Carney Institute for Brain ScienceBrown University Alpert Medical School and the Norman Prince Neurosciences Institute of Rhode Island HospitalProvidenceUSA
  2. 2.Department of Neuroscience, Warren Alpert Medical SchoolBrown UniversityProvidenceUSA
  3. 3.Neurosurgery, Neuroscience, and the Carney Institute for Brain ScienceBrown University and the Norman Prince Neurosciences Institute of Rhode Island HospitalProvidenceUSA

Personalised recommendations