Ablation: Radiofrequency, Laser, and HIFU

  • Anita P. Bhansali
  • Ryder P. GwinnEmail author


Neurosurgeons can use several high precision technologies to create lesions in the central nervous system for the treatment of functional disorders. These include radiofrequency ablation (RFA), laser interstitial thermal therapy (LITT), and high-intensity focused ultrasound (HIFU). While all of these methods use thermal energy to create permanent tissue damage, each has a unique profile of indications, risks, and advantages related to how the energy is deployed and how it interacts with biological structures. In this chapter, we discuss the historical development, mechanism of action, and current indications for each modality, including future directions for clinical and research development.


Radiofrequency ablation Laser interstitial therapy High-intensity focused ultrasound Stereotactic lesioning 


  1. 1.
    Kirschner M. Elektrocoagulation des ganglion gasseri. Zentralbl Chir. 1932;(47):2841–3.Google Scholar
  2. 2.
    Guridi J, Lozano AM. A brief history of pallidotomy. Neurosurgery. 1997;41(5):1169–80; discussion 80–3.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Spiegel EA, Wycis HT. Ansotomy in paralysis agitans. AMA Arch Neurol Psychiatry. 1954;71(5):598–614.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Narabayashi H, Nagao T, Saito Y, Yoshida M, Nagahata M. Stereotaxic amygdalotomy for behavior disorders. Arch Neurol. 1963;9:1–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Marossero F, Ravagnati L, Sironi VA, Miserocchi G, Franzini A, Ettorre G, et al. Late results of stereotactic radiofrequency lesions in epilepsy. Acta Neurochir Suppl. 1980;30:145–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Patil AA, Andrews R, Torkelson R. Stereotactic volumetric radiofrequency lesioning of intracranial structures for control of intractable seizures. Stereotact Funct Neurosurg. 1995;64(3):123–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Parrent AG, Blume WT. Stereotactic amygdalohippocampotomy for the treatment of medial temporal lobe epilepsy. Epilepsia. 1999;40(10):1408–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Lozano CS, Tam J, Lozano AM. The changing landscape of surgery for Parkinson’s disease. Mov Disord. 2018;33(1):36–47.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg. 1992;76(1):53–61.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Webb H, Lubner MG, Hinshaw JL. Thermal ablation. Semin Roentgenol. 2011;46:133–41.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Liscak R, Malikova H, Kalina M, Vojtech Z, Prochazka T, Marusic P, et al. Stereotactic radiofrequency amygdalohippocampectomy in the treatment of mesial temporal lobe epilepsy. Acta Neurochir. 2010;152(8):1291–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Voges J, Buntjen L, Schmitt FC. Radiofrequency-thermoablation: general principle, historical overview and modern applications for epilepsy. Epilepsy Res. 2018;142:113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hirabayashi H, Hariz MI, Wardell K, Blomstedt P. Impact of parameters of radiofrequency coagulation on volume of stereotactic lesion in pallidotomy and thalamotomy. Stereotact Funct Neurosurg. 2012;90(5):307–15.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Catenoix H, Bourdillon P, Guenot M, Isnard J. The combination of stereo-EEG and radiofrequency ablation. Epilepsy Res. 2018;142:117–20.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kramska L, Vojtech Z, Lukavsky J, Stara M, Malikova H. Five-year neuropsychological outcome after stereotactic radiofrequency amygdalohippocampectomy for mesial temporal lobe epilepsy: longitudinal study. Stereotact Funct Neurosurg. 2017;95(3):149–57.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Homma J, Kameyama S, Masuda H, Ueno T, Fujimoto A, Oishi M, et al. Stereotactic radiofrequency thermocoagulation for hypothalamic hamartoma with intractable gelastic seizures. Epilepsy Res. 2007;76(1):15–21.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kameyama S, Shirozu H, Masuda H, Ito Y, Sonoda M, Akazawa K. MRI-guided stereotactic radiofrequency thermocoagulation for 100 hypothalamic hamartomas. J Neurosurg. 2016;124(5):1503–12.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tandon V, Chandra PS, Doddamani RS, Subianto H, Bajaj J, Garg A, et al. Stereotactic radiofrequency thermocoagulation of hypothalamic hamartoma using robotic guidance (ROSA) coregistered with O-arm guidance-preliminary technical note. World Neurosurg. 2018;112:267–74.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wei PH, An Y, Fan XT, Wang YH, Yang YF, Ren LK, et al. Stereoelectroencephalography-guided radiofrequency thermocoagulation for hypothalamic hamartomas: preliminary evidence. World Neurosurg. 2018;114:e1073–e8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Perez-Suarez J, Torres Diaz CV, Lopez Manzanares L, Navas Garcia M, Pastor J, Barrio Fernandez P, et al. Radiofrequency lesions through deep brain stimulation electrodes in movement disorders: case report and review of the literature. Stereotact Funct Neurosurg. 2017;95(3):137–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Bown SG. Phototherapy in tumors. World J Surg. 1983;7(6):700–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Ascher PW, Justich E, Schrottner O. A new surgical but less invasive treatment of central brain tumours preliminary report. Acta Neurochir Suppl. 1991;52:78–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38(1):79–100.PubMedCrossRefGoogle Scholar
  24. 24.
    De Poorter J. Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med. 1995;34(3):359–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Kang JY, Sperling MR. Magnetic resonance imaging-guided laser interstitial thermal therapy for treatment of drug-resistant epilepsy. Neurotherapeutics. 2017;14(1):176–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Du VX, Gandhi SV, Rekate HL, Mehta AD. Laser interstitial thermal therapy: a first line treatment for seizures due to hypothalamic hamartoma? Epilepsia. 2017;58(Suppl 2):77–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Missios S, Bekelis K, Barnett GH. Renaissance of laser interstitial thermal ablation. Neurosurg Focus. 2015;38(3):E13.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Norred SE, Johnson JA. Magnetic resonance-guided laser induced thermal therapy for glioblastoma multiforme: a review. Biomed Res Int. 2014;2014:761312.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Carpentier A, McNichols RJ, Stafford RJ, Itzcovitz J, Guichard JP, Reizine D, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery. 2008;63(1 Suppl 1):ONS21–8; discussion ONS8–9.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol. 2006;59(2):208–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Rahmathulla G, Recinos PF, Kamian K, Mohammadi AM, Ahluwalia MS, Barnett GH. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology. 2014;87(2):67–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Bezchlibnyk YB, Willie JT, Gross RE. A neurosurgeon’s view: laser interstitial thermal therapy of mesial temporal lobe structures. Epilepsy Res. 2018;142:135–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Southwell DG, Birk HS, Larson PS, Starr PA, Sugrue LP, Auguste KI. Laser ablative therapy of sessile hypothalamic hamartomas in children using interventional MRI: report of 5 cases. J Neurosurg Pediatr. 2018;21(5):460–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Wilfong AA, Curry DJ. Hypothalamic hamartomas: optimal approach to clinical evaluation and diagnosis. Epilepsia. 2013;54(Suppl 9):109–14.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ho AL, Miller KJ, Cartmell S, Inoyama K, Fisher RS, Halpern CH. Stereotactic laser ablation of the splenium for intractable epilepsy. Epilepsy Behav Case Rep. 2016;5:23–6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Drane DL, Loring DW, Voets NL, Price M, Ojemann JG, Willie JT, et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia. 2015;56(1):101–13.CrossRefGoogle Scholar
  37. 37.
    Ellis JA, Mejia Munne JC, Wang SH, McBrian DK, Akman CI, Feldstein NA, et al. Staged laser interstitial thermal therapy and topectomy for complete obliteration of complex focal cortical dysplasias. J Clin Neurosci. 2016;31:224–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Curie PJ, Curie J. Crystal physics: development by pressure of polar electricity in hemihedral crystals with inclined faces. C R Hebd Seances Acad Sci. 1880;91(291).Google Scholar
  39. 39.
    Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron. 1960;Me-7:166–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Harary M, Segar DJ, Huang KT, Tafel IJ, Valdes PA, Cosgrove GR. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg Focus. 2018;44(2):E2.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hynynen K, Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol. 1998;24(2):275–83.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Damianou C, Hynynen K. The effect of various physical parameters on the size and shape of necrosed tissue volume during ultrasound surgery. J Acoust Soc Am. 1994;95(3):1641–9.PubMedCrossRefGoogle Scholar
  43. 43.
    McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 2010;66(2):323–32; discussion 32.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Tempany CM, McDannold NJ, Hynynen K, Jolesz FA. Focused ultrasound surgery in oncology: overview and principles. Radiology. 2011;259(1):39–56.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol. 1942;26(2):179–93.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mohammed N, Patra D, Nanda A. A meta-analysis of outcomes and complications of magnetic resonance-guided focused ultrasound in the treatment of essential tremor. Neurosurg Focus. 2018;44(2):E4.PubMedCrossRefGoogle Scholar
  47. 47.
    Chang WS, Jung HH, Zadicario E, Rachmilevitch I, Tlusty T, Vitek S, et al. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull. J Neurosurg. 2016;124(2):411–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang TR, Bond AE, Dallapiazza RF, Blanke A, Tilden D, Huerta TE, et al. Transcranial magnetic resonance imaging-guided focused ultrasound thalamotomy for tremor: technical note. Neurosurg Focus. 2018;44(2):E3.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zaaroor M, Sinai A, Goldsher D, Eran A, Nassar M, Schlesinger I. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson’s disease and essential tremor cases. J Neurosurg. 2018;128(1):202–10.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Iacopino DG, Gagliardo C, Giugno A, Giammalva GR, Napoli A, Maugeri R, et al. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson’s disease. Neurosurg Focus. 2018;44(2):E7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, et al. Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery. 2006;59(5):949–55; discussion 55–6.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Tsivgoulis G, Eggers J, Ribo M, Perren F, Saqqur M, Rubiera M, et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke. 2010;41(2):280–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Monteith SJ, Kassell NF, Goren O, Harnof S. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage. Neurosurg Focus. 2013;34(5):E14.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Foley JL, Eames M, Snell J, Hananel A, Kassell N, Aubry JF. Image-guided focused ultrasound: state of the technology and the challenges that lie ahead. Imaging Med. 2013;5(4):357–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of NeurosurgeryTexas Health Harris Methodist Hospital Fort WorthFort WorthUSA
  2. 2.Center for Neurologic Restoration, Swedish Neuroscience Institute, Swedish Medical CenterSeattleUSA

Personalised recommendations