Advertisement

Non-invasive Central Neuromodulation with Transcranial Magnetic Stimulation

  • Jeanette Hui
  • Pantelis Lioumis
  • Daniel M. Blumberger
  • Zafiris J. DaskalakisEmail author
Chapter
  • 96 Downloads

Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive method for neuromodulation which involves the application of brief magnetic pulses to the cortex to induce intracortical currents below the area of stimulation. The manipulation of stimulation parameters can alter the spatial and temporal patterns of cortical activation. Combining TMS with neurophysiological and neuroimaging modalities, such as electroencephalography (EEG) and stereotactic neuronavigation, respectively, can allow for a cause-and-effect approach to study cortical processes in vivo with very good spatial and excellent temporal precision. Investigation of cortical network properties may allow for the development of predictors and biomarkers of the pathophysiology of brain disorders, which can help bridge the gap between basic research and clinical applications. Already, therapeutic TMS paradigms are being used to treat medication-resistant depression and can potentially be used to ameliorate symptoms in other psychiatric or neurological disorders. Furthermore, navigated TMS procedures are increasingly being used for preoperative functional mapping of motor and language regions and can improve postoperative outcomes. Thus, TMS carries tremendous promise to assess brain properties in healthy and diseased states and can be used to optimize the efficacy of brain stimulation treatments in clinical populations.

Keywords

Transcranial magnetic stimulation Non-invasive neuromodulation Electroencephalography Electromyography Neuronavigation Psychiatric disorders Neurological disorders Preoperative mapping 

References

  1. 1.
    Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet (Lond, Engl). 1985;1(8437):1106–7.CrossRefGoogle Scholar
  3. 3.
    Barker AT. The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:3–21.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Rossini PM, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr Clin Neurophysiol. 1998;106(3):180–94.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Merton PA, Morton HB, Hill DK, Marsden CD. Scope of a technique for electrical stimulation of human brain, spinal cord, and muscle. Lancet. 1982;320(8298):597–600.CrossRefGoogle Scholar
  6. 6.
    Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–64.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schubert D, Kötter R, Zilles K, Luhmann HJ, Staiger JF. Cell type-specific circuits of cortical layer IV spiny neurons. J Neurosci. 2003;23(7):2961–70.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, et al. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol. 1989;412:449–73.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ruohonen J, Karhu J. Navigated transcranial magnetic stimulation. Neurophysiol Clin Neurophysiol. 2010;40(1):7–17.CrossRefGoogle Scholar
  10. 10.
    Mills KR, Boniface SJ, Schubert M. Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr Clin Neurophysiol Potentials Sect. 1992;85(1):17–21.CrossRefGoogle Scholar
  11. 11.
    Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG. Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol Potentials Sect. 1992;85(1):9–16.CrossRefGoogle Scholar
  12. 12.
    Ilmoniemi RJ, Ruohonen J, Karhu J. Transcranial magnetic stimulation--a new tool for functional imaging of the brain. Crit Rev Biomed Eng. 1999;27(3–5):241–84.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport. 1997;8(16):3537–40.CrossRefGoogle Scholar
  14. 14.
    Pascual-Leone A, Cohen LG, Brasil-Neto JP, Hallett M. Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroencephalogr Clin Neurophysiol. 1994;93(1):42–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rushton WA. The effect upon the threshold for nervous excitation of the length of nerve exposed, and the angle between current and nerve. J Physiol. 1927;63(4):357–77.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Silva S, Basser PJ, Miranda PC. Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clin Neurophysiol. 2008;119(10):2405–13.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Terao Y, Ugawa Y. Basic mechanisms of TMS. J Clin Neurophysiol. 2002;19(4):322–43.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Landau WM, Bishop GH, Clare MH. Site of excitation in stimulation of the motor cortex. J Neurophysiol. 1965;28(6):1206–22.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Murphy SC, Palmer LM, Nyffeler T, Müri RM, Larkum ME. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites. elife. 2016;5:e13598.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rothwell JC, Day BL, Thompson PD, Kujirai T. Short latency intracortical inhibition: one of the most popular tools in human motor neurophysiology. J Physiol. 2009;587(1):11–2.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Silvanto J, Muggleton N, Walsh V. State-dependency in brain stimulation studies of perception and cognition. Trends Cogn Sci. 2008;12:447–54.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Matthews PB. The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation. J Physiol. 1999;518((Pt 3)):867–82.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Matheson NA, Shemmell JBH, De Ridder D, Reynolds JNJ. Understanding the effects of repetitive transcranial magnetic stimulation on neuronal circuits. Front Neural Circuits. 2016;10:67.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Moliadze V, Zhao Y, Eysel U, Funke K. Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol. 2003;553(2):665–79.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Salvador R, Silva S, Basser PJ, Miranda PC. Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clin Neurophysiol. 2011;122(4):748–58.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ueno S, Tashiro T, Harada K. Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J Appl Phys. 1988;64(10):5862–4.CrossRefGoogle Scholar
  27. 27.
    Zangen A, Roth Y, Voller B, Hallett M. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin Neurophysiol. 2005;116(4):775–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lazzaro V, Oliviero A, Mazzone P, Insola A, Pilato F, Saturno E, et al. Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans. Exp Brain Res. 2001;141(1):121–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jalinous R. Principles of magnetic stimulator design. In: Pascual-Leone A, Davey NJ, Rothwell JC, editors. Handbook of transcranial magnetic stimulation. London: Arnold; 2002. p. 30–8.Google Scholar
  30. 30.
    Peterchev AV, Jalinous R, Lisanby SH. A transcranial magnetic stimulator inducing near-rectangular pulses with controllable pulse width (cTMS). IEEE Trans Biomed Eng. 2008;55(1):257–66.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Peterchev AV, Murphy DL, Lisanby SH. Repetitive transcranial magnetic stimulator with controllable pulse parameters. J Neural Eng. 2011;8(3):036016.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kirschstein T, Köhling R. What is the source of the EEG? Clin EEG Neurosci. 2009;40(3):146–9.CrossRefGoogle Scholar
  33. 33.
    Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. TMS-EEG: a window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions. Neurosci Biobehav Rev. 2016;64:175–84.CrossRefGoogle Scholar
  34. 34.
    Gosseries O, Sarasso S, Casarotto S, Boly M, Schnakers C, Napolitani M, et al. On the cerebral origin of EEG responses to TMS: insights from severe cortical lesions. Brain Stimul. 2015;8(1):142–9.CrossRefGoogle Scholar
  35. 35.
    Lioumis P, Kicić D, Savolainen P, Mäkelä JP, Kähkönen S. Reproducibility of TMS-evoked EEG responses. Hum Brain Mapp. 2009;30(4):1387–96.CrossRefGoogle Scholar
  36. 36.
    Kähkönen S, Ilmoniemi RJ. Transcranial magnetic stimulation: applications for neuropsychopharmacology. J Psychopharmacol. 2004;18(2):257–61.CrossRefGoogle Scholar
  37. 37.
    Casarotto S, Romero Lauro LJ, Bellina V, Casali AG, Rosanova M, Pigorini A, et al. EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time. Valdes-Sosa PA, editor. PLoS One. 2010;5(4):e10281.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ilmoniemi RJ, Karhu J. TMS and Electrocephalography: Methods and Current Advances. In: Epstein CM, Wassermann EM, Ziemann U, editors. Oxford Handbook of Transcranial Stimulation. Oxford: Oxford University Press; 2008:593–608.Google Scholar
  39. 39.
    Daskalakis ZJ, Farzan F, Radhu N, Fitzgerald PB. Combined transcranial magnetic stimulation and electroencephalography: its past, present and future. Brain Res. 2012;1463:93–107.CrossRefGoogle Scholar
  40. 40.
    Virtanen J, Ruohonen J, Näätänen R, Ilmoniemi RJ. Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med Biol Eng Comput. 1999;37(3):322–6.CrossRefGoogle Scholar
  41. 41.
    Atluri S, Frehlich M, Mei Y, Garcia Dominguez L, Rogasch NC, Wong W, et al. TMSEEG: a MATLAB-based graphical user interface for processing electrophysiological signals during transcranial magnetic stimulation. Front Neural Circuits. 2016;10:78.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Casula EP, Bertoldo A, Tarantino V, Maiella M, Koch G, Rothwell JC, et al. TMS-evoked long-lasting artefacts: a new adaptive algorithm for EEG signal correction. Clin Neurophysiol. 2017;128(9):1563–74.CrossRefGoogle Scholar
  43. 43.
    Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and modulating brain circuitry through transcranial magnetic stimulation combined with electroencephalography. Front Neural Circuits. 2016;10:73.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lioumis P, Zomorrodi R, Hadas I, Daskalakis ZJ, Blumberger DM. Combined transcranial magnetic stimulation and electroencephalography of the dorsolateral prefrontal cortex. J Vis Exp. 2018;138:e57983.Google Scholar
  45. 45.
    Fuggetta G, Fiaschi A, Manganotti P. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. NeuroImage. 2005;27(4):896–908.CrossRefGoogle Scholar
  46. 46.
    Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29(24):7679–85.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ferrarelli F, Massimini M, Peterson MJ, Riedner BA, Lazar M, Murphy MJ, et al. Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatry. 2008;165(8):996–1005.CrossRefGoogle Scholar
  48. 48.
    Daskalakis ZJ, Farzan F, Barr MS, Maller JJ, Chen R, Fitzgerald PB. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study. Neuropsychopharmacology. 2008;33(12):2860–9.CrossRefGoogle Scholar
  49. 49.
    Beam W, Borckardt JJ, Reeves ST, George MS. An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul. 2009;2(1):50–4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Herwig U, Satrapi P, Schönfeldt-Lecuona C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003;16(2):95–9.CrossRefGoogle Scholar
  51. 51.
    Neggers SFW, Langerak TR, Schutter DJLG, Mandl RCW, Ramsey NF, Lemmens PJJ, et al. A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials. NeuroImage. 2004;21(4):1805–17.CrossRefGoogle Scholar
  52. 52.
    Schmidt S, Bathe-Peters R, Fleischmann R, Rönnefarth M, Scholz M, Brandt SA. Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates. Hum Brain Mapp. 2015;36(1):40–9.CrossRefGoogle Scholar
  53. 53.
    Julkunen P, Säisänen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, et al. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. NeuroImage. 2009;44(3):790–5.CrossRefGoogle Scholar
  54. 54.
    Rodseth J, Washabaugh EP, Krishnan C. A novel low-cost approach for navigated transcranial magnetic stimulation. Restor Neurol Neurosci. 2017;35(6):601–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Sparing R, Buelte D, Meister IG, Pauš T, Fink GR. Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp. 2008;29(1):82–96.CrossRefGoogle Scholar
  56. 56.
    Funk AP, George MS. Prefrontal EEG asymmetry as a potential biomarker of antidepressant treatment response with transcranial magnetic stimulation (TMS): a case series. Clin EEG Neurosci. 2008;39(3):125–30.CrossRefGoogle Scholar
  57. 57.
    Concerto C, Lanza G, Cantone M, Pennisi M, Giordano D, Spampinato C, et al. Different patterns of cortical excitability in major depression and vascular depression: a transcranial magnetic stimulation study. BMC Psychiatry. 2013;13(1):300.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, et al. Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology. 2002;59(3):392–7.CrossRefGoogle Scholar
  59. 59.
    Eisen A, Shytbel W, Murphy K, Hoirch M. Cortical magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve. 1990;13(2):146–51.CrossRefGoogle Scholar
  60. 60.
    Ridding MC, Rothwell JC, Inzelberg R. Changes in excitability of motor cortical circuitry in patients with parkinson’s disease. Ann Neurol. 1995;37(2):181–8.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ni Z, Bahl N, Gunraj CA, Mazzella F, Chen R. Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology. 2013;80(19):1746–53.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ni Z, Chen R. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl Neurodegener. 2015;4:22.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ilić TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U. Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol. 2002;545(Pt 1):153–67.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W. The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res. 1996;109(1):127–35.CrossRefGoogle Scholar
  65. 65.
    Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol. 1999;517(Pt 2):591–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wang XJ, Buzsáki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci. 1996;16(20):6402–13.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wobrock T, Schneider M, Kadovic D, Schneider-Axmann T, Ecker UKH, Retz W, et al. Reduced cortical inhibition in first-episode schizophrenia. Schizophr Res. 2008;105(1–3):252–61.CrossRefGoogle Scholar
  68. 68.
    Hasan A, Wobrock T, Grefkes C, Labusga M, Levold K, Schneider-Axmann T, et al. Deficient inhibitory cortical networks in antipsychotic-naive subjects at risk of developing first-episode psychosis and first-episode schizophrenia patients: a cross-sectional study. Biol Psychiatry. 2012;72(9):744–51.CrossRefGoogle Scholar
  69. 69.
    Hasan A, Nitsche MA, Rein B, Schneider-Axmann T, Guse B, Gruber O, et al. Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behav Brain Res. 2011;224(1):15–22.CrossRefGoogle Scholar
  70. 70.
    Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S. Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry. 2002;59(4):347–54.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Noda Y, Barr MS, Zomorrodi R, Cash RFH, Farzan F, Rajji TK, et al. Evaluation of short interval cortical inhibition and intracortical facilitation from the dorsolateral prefrontal cortex in patients with schizophrenia. Sci Rep. 2017;7(1):17106.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Cash RFH, Noda Y, Zomorrodi R, Radhu N, Farzan F, Rajji TK, et al. Characterization of glutamatergic and GABAA-mediated neurotransmission in motor and dorsolateral prefrontal cortex using paired-pulse TMS-EEG. Neuropsychopharmacology. 2017;42(2):502–11.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ferreri F, Pasqualetti P, Määttä S, Ponzo D, Ferrarelli F, Tononi G, et al. Human brain connectivity during single and paired pulse transcranial magnetic stimulation. NeuroImage. 2011;54(1):90–102.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Swayne OBC, Rothwell JC, Ward NS, Greenwood RJ. Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb Cortex. 2008;18(8):1909–22.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke. 2005;36(12):2681–6.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Edwards JD, Meehan SK, Linsdell MA, Borich MR, Anbarani K, Jones PW, et al. Changes in thresholds for intracortical excitability in chronic stroke: more than just altered intracortical inhibition. Restor Neurol Neurosci. 2013;31(6):693–705.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Mello EA, Cohen LG, Monteiro Dos Anjos S, Conti J, Andrade KNF, Tovar Moll F, et al. Increase in short-interval intracortical facilitation of the motor cortex after low-frequency repetitive magnetic stimulation of the unaffected hemisphere in the subacute phase after stroke. Neural Plast. 2015;2015:407320.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Valls-Solé J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85(6):355–64.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    McDonnell MN, Orekhov Y, Ziemann U. The role of GABA(B) receptors in intracortical inhibition in the human motor cortex. Exp Brain Res. 2006;173(1):86–93.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Salavati B, Rajji TK, Zomorrodi R, Blumberger DM, Chen R, Pollock BG, et al. Pharmacological manipulation of cortical inhibition in the dorsolateral prefrontal cortex. Neuropsychopharmacology. 2018;43(2):354–61.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sanger TD, Garg RR, Chen R. Interactions between two different inhibitory systems in the human motor cortex. J Physiol. 2001;530(Pt 2):307–17.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    McCormick DA. GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol. 1989;62(5):1018–27.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Farzan F, Barr MS, Levinson AJ, Chen R, Wong W, Fitzgerald PB, et al. Reliability of long-interval cortical inhibition in healthy human subjects: a TMS–EEG study. J Neurophysiol. 2010;104(3):1339–46.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Farzan F, Barr MS, Levinson AJ, Chen R, Wong W, Fitzgerald PB, et al. Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain. 2010;133(5):1505–14.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Radhu N, Garcia Dominguez L, Farzan F, Richter MA, Semeralul MO, Chen R, et al. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia. Brain. 2015;138(2):483–97.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Naim-Feil J, Bradshaw JL, Rogasch NC, Daskalakis ZJ, Sheppard DM, Lubman DI, et al. Cortical inhibition within motor and frontal regions in alcohol dependence post-detoxification: a pilot TMS-EEG study. World J Biol Psychiatry. 2016;17(7):547–56.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Sun Y, Farzan F, Mulsant BH, Rajji TK, Fitzgerald PB, Barr MS, et al. Indicators for remission of suicidal ideation following magnetic seizure therapy in patients with treatment-resistant depression. JAMA Psychiat. 2016;73(4):337.CrossRefGoogle Scholar
  88. 88.
    Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123(Pt 3):572–84.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Rajji TK, Sun Y, Zomorrodi-Moghaddam R, Farzan F, Blumberger DM, Mulsant BH, et al. PAS-induced potentiation of cortical-evoked activity in the dorsolateral prefrontal cortex. Neuropsychopharmacology. 2013;38(12):2545–52.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Veniero D, Ponzo V, Koch G. Paired associative stimulation enforces the communication between interconnected areas. J Neurosci. 2013;33(34):13773–83.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    McGie SC, Masani K, Popovic MR. Failure of spinal paired associative stimulation to induce neuroplasticity in the human corticospinal tract. J Spinal Cord Med. 2014;37(5):565–74.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Shulga A, Lioumis P, Kirveskari E, Savolainen S, Mäkelä JP, Ylinen A. The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation. J Neurosci Methods. 2015;242:112–7.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Shulga A, Lioumis P, Zubareva A, Brandstack N, Kuusela L, Kirveskari E, et al. Long-term paired associative stimulation can restore voluntary control over paralyzed muscles in incomplete chronic spinal cord injury patients. Spinal Cord Ser Cases. 2016;2:16016.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Player MJ, Taylor JL, Weickert CS, Alonzo A, Sachdev P, Martin D, et al. Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology. 2013;38(11):2101–8.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Frantseva MV, Fitzgerald PB, Chen R, Moller B, Daigle M, Daskalakis ZJ. Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill leaning. Cereb Cortex. 2008;18(5):990–6.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Daskalakis ZJ, Christensen BK, Fitzgerald PB, Chen R. Dysfunctional neural plasticity in patients with schizophrenia. Arch Gen Psychiatry. 2008;65(4):378.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Di Lorenzo F, Ponzo V, Motta C, Bonnì S, Picazio S, Caltagirone C, et al. Impaired spike timing dependent cortico-cortical plasticity in Alzheimer’s disease patients. J Alzheimers Dis. 2018:1–9.Google Scholar
  98. 98.
    Orth M, Schippling S, Schneider SA, Bhatia KP, Talelli P, Tabrizi SJ, et al. Abnormal motor cortex plasticity in premanifest and very early manifest Huntington disease. J Neurol Neurosurg Psychiatry. 2010;81(3):267–70.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Morgante F, Espay AJ, Gunraj C, Lang AE, Chen R. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain. 2006;129(4):1059–69.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Thut G, Miniussi C. New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci. 2009;13(4):182–9.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Ferrarelli F, Sarasso S, Guller Y, Riedner BA, Peterson MJ, Bellesi M, et al. Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia. Arch Gen Psychiatry. 2012;69(8):766–74.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Van Der Werf YD, Sadikot AF, Strafella AP, Paus T. The neural response to transcranial magnetic stimulation of the human motor cortex. II. Thalamocortical contributions. Exp Brain Res. 2006;175(2):246–55.CrossRefGoogle Scholar
  103. 103.
    Kentgen LM, Tenke CE, Pine DS, Fong R, Klein RG, Bruder GE. Electroencephalographic asymmetries in adolescents with major depression: influence of comorbidity with anxiety disorders. J Abnorm Psychol. 2000;109(4):797–802.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Bruder GE, Tenke CE, Warner V, Nomura Y, Grillon C, Hille J, et al. Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders. Biol Psychiatry. 2005;57(4):328–35.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, et al. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. NeuroImage. 2018;175:365–78.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2000;111(5):800–5.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Klein E, Kreinin I, Chistyakov A, Koren D, Mecz L, Marmur S, et al. Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study. Arch Gen Psychiatry. 1999;56(4):315–20.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, Li XB, et al. A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol Psychiatry. 2000;48(10):962–70.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Fitzgerald PB, Benitez J, de Castella A, Daskalakis ZJ, Brown TL, Kulkarni J. A randomized, controlled trial of sequential bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression. Am J Psychiatry. 2006;163(1):88–94.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10(1):1–18.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    George MS, Wassermann EM, Kimbrell TA, Little JT, Williams WE, Danielson AL, et al. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial. Am J Psychiatry. 1997;154(12):1752–6.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Fitzgerald PB, Brown TL, Marston NAU, Daskalakis ZJ, de Castella A, Kulkarni J. Transcranial magnetic stimulation in the treatment of depression. Arch Gen Psychiatry. 2003;60(10):1002.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Avery DH, Holtzheimer PE, Fawaz W, Russo J, Neumaier J, Dunner DL, et al. A controlled study of repetitive transcranial magnetic stimulation in medication-resistant major depression. Biol Psychiatry. 2006;59(2):187–94.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M, et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder. Arch Gen Psychiatry. 2010;67(5):507.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Chistyakov AV, Kaplan B, Rubichek O, Kreinin I, Koren D, Feinsod M, et al. Antidepressant effects of different schedules of repetitive transcranial magnetic stimulation vs. clomipramine in patients with major depression: relationship to changes in cortical excitability. Int J Neuropsychopharmacol. 2005;8(2):223–33.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Triggs WJ, McCoy KJ, Greer R, Rossi F, Bowers D, Kortenkamp S, et al. Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol Psychiatry. 1999;45(11):1440–6.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Dolberg OT, Dannon PN, Schreiber S, Grunhaus L. Magnetic motor threshold and response to TMS in major depressive disorder. Acta Psychiatr Scand. 2002;106(3):220–3.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Noda Y, Nakamura M, Saeki T, Inoue M, Iwanari H, Kasai K. Potentiation of quantitative electroencephalograms following prefrontal repetitive transcranial magnetic stimulation in patients with major depression. Neurosci Res. 2013;77(1–2):70–7.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Valiulis V, Gerulskis G, Dapšys K, Vištartaite G, Šiurkute A, Mačiulis V. Electrophysiological differences between high and low frequency rTMS protocols in depression treatment. Acta Neurobiol Exp (Wars). 2012;72(3):283–95.Google Scholar
  120. 120.
    Spronk D, Arns M, Bootsma A, van Ruth R, Fitzgerald PB. Long term effects of left frontal rTMS on EEG and ERPs in patients with depression. Clin EEG Neurosci. 2008;39(3):118–24.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Pellicciari MC, Cordone S, Marzano C, Bignotti S, Gazzoli A, Miniussi C, et al. Dorsolateral prefrontal transcranial magnetic stimulation in patients with major depression locally affects alpha power of REM sleep. Front Hum Neurosci. 2013;7:433.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Suppa A, Huang Y-Z, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, et al. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016;9(3):323–35.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Li C-T, Chen M-H, Juan C-H, Huang H-H, Chen L-F, Hsieh J-C, et al. Efficacy of prefrontal theta-burst stimulation in refractory depression: a randomized sham-controlled study. Brain. 2014;137(7):2088–98.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Chistyakov AV, Rubicsek O, Kaplan B, Zaaroor M, Klein E. Safety, tolerability and preliminary evidence for antidepressant efficacy of theta-burst transcranial magnetic stimulation in patients with major depression. Int J Neuropsychopharmacol. 2010;13(03):387.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet (Lond, Engl). 2018;391(10131):1683–92.CrossRefGoogle Scholar
  127. 127.
    Chung SW, Rogasch NC, Hoy KE, Sullivan CM, Cash RFH, Fitzgerald PB. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum Brain Mapp. 2018;39(2):783–802.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Chung SW, Rogasch NC, Hoy KE, Fitzgerald PB. The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul. 2018;11(3):566–74.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Hamer HM, Morris HH, Mascha EJ, Karafa MT, Bingaman WE, Bej MD, et al. Complications of invasive video-EEG monitoring with subdural grid electrodes. Neurology. 2002;58(1):97–103.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lehéricy S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A, et al. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg. 2000;92(4):589–98.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol. 2000;21(8):1415–22.Google Scholar
  132. 132.
    Takahashi S, Vajkoczy P, Picht T. Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with rolandic brain tumors. Neurosurg Focus. 2013;34(4):E3.CrossRefGoogle Scholar
  133. 133.
    Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B, et al. Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin Neurophysiol. 2016;127(3):1895–900.CrossRefGoogle Scholar
  134. 134.
    Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B, et al. Safety and tolerability of navigated TMS in healthy volunteers. Clin Neurophysiol. 2016;127(3):1916–8.CrossRefGoogle Scholar
  135. 135.
    Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Rosen BR, et al. Stereotactic transcranial magnetic stimulation: correlation with direct electrical cortical stimulation. Neurosurgery. 1997;41(6):1319–25; discussion 1325–6.CrossRefGoogle Scholar
  136. 136.
    Vitikainen A-M, Lioumis P, Paetau R, Salli E, Komssi S, Metsähonkala L, et al. Combined use of non-invasive techniques for improved functional localization for a selected group of epilepsy surgery candidates. NeuroImage. 2009;45(2):342–8.CrossRefGoogle Scholar
  137. 137.
    Coburger J, Musahl C, Henkes H, Horvath-Rizea D, Bittl M, Weissbach C, et al. Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurg Rev. 2013;36(1):65–76.CrossRefGoogle Scholar
  138. 138.
    Forster M-T, Hattingen E, Senft C, Gasser T, Seifert V, Szelényi A. Navigated transcranial magnetic stimulation and functional magnetic resonance imaging: advanced adjuncts in preoperative planning for central region tumors. Neurosurgery. 2011;68(5):1317–24; discussion 1324–5.CrossRefGoogle Scholar
  139. 139.
    Picht T, Schulz J, Hanna M, Schmidt S, Suess O, Vajkoczy P. Assessment of the influence of navigated transcranial magnetic stimulation on surgical planning for tumors in or near the motor cortex. Neurosurgery. 2012;70(5):1248–57.CrossRefGoogle Scholar
  140. 140.
    Krieg SM, Sabih J, Bulubasova L, Obermueller T, Negwer C, Janssen I, et al. Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro-Oncology. 2014;16(9):1274–82.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Frey D, Schilt S, Strack V, Zdunczyk A, Rosler J, Niraula B, et al. Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-Oncology. 2014;16(10):1365–72.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Lefaucheur J-P, Picht T. The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin. 2016;46(2):125–33.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Lioumis P, Zhdanov A, Mäkelä N, Lehtinen H, Wilenius J, Neuvonen T, et al. A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods. 2012;204(2):349–54.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Picht T, Krieg SM, Sollmann N, Rösler J, Niraula B, Neuvonen T, et al. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery. 2013;72(5):808–19.CrossRefGoogle Scholar
  145. 145.
    Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, et al. Language mapping with navigated repetitive TMS: proof of technique and validation. NeuroImage. 2013;82:260–72.CrossRefGoogle Scholar
  146. 146.
    Sollmann N, Hauck T, Hapfelmeier A, Meyer B, Ringel F, Krieg SM. Intra- and interobserver variability of language mapping by navigated transcranial magnetic brain stimulation. BMC Neurosci. 2013;14(1):150.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Giussani C, Roux F-E, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66(1):113–20.CrossRefGoogle Scholar
  148. 148.
    Yetkin FZ, Mueller WM, Morris GL, McAuliffe TL, Ulmer JL, Cox RW, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol. 1997;18(7):1311–5.Google Scholar
  149. 149.
    FitzGerald DB, Cosgrove GR, Ronner S, Jiang H, Buchbinder BR, Belliveau JW, et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol. 1997;18(8):1529–39.Google Scholar
  150. 150.
    Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, et al. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg. 2015;123(1):212–25.CrossRefGoogle Scholar
  151. 151.
    Krieg SM, Buchmann NH, Gempt J, Shiban E, Meyer B, Ringel F. Diffusion tensor imaging fiber tracking using navigated brain stimulation—a feasibility study. Acta Neurochir. 2012;154(3):555–63.CrossRefGoogle Scholar
  152. 152.
    Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, Karhu J, Vajkoczy P, Suess O. Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery. 2011;69(3):581–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jeanette Hui
    • 1
    • 2
  • Pantelis Lioumis
    • 1
  • Daniel M. Blumberger
    • 1
    • 3
  • Zafiris J. Daskalakis
    • 1
    • 3
    Email author
  1. 1.Temerty Centre for Therapeutic Brain InterventionCentre for Addiction and Mental HealthTorontoCanada
  2. 2.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  3. 3.Department of Psychiatry, Institute of Medical ScienceUniversity of TorontoTorontoCanada

Personalised recommendations