Advertisement

Atomic Switch pp 161-174 | Cite as

Nanoionic Devices for Physical Property Tuning and Enhancement

  • Takashi TsuchiyaEmail author
  • Kazuya Terabe
  • Masakazu Aono
Conference paper
  • 49 Downloads
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Nanoionic devices for physical property tuning and enhancement have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology. Local ionic transport near the solid/solid interface enabled in-situ tuning and enhancement of various physical properties. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrochemical carrier doping using a redox reaction; the other is electrostatic carrier doping using an electric double layer (EDL). Optical bandgap and photoluminescence are tuned for various applications including smart windows and biosensors. Magnetization and magnetoresistance are tuned for low-power-consumption magnetic storage devices. Superconducting transition temperature is enhanced for exploring high temperature superconductivity. Nanoionic devices for physical property tuning and enhancement are promising derivative of atomic switch technology.

Notes

Acknowledgments

The authors thank Dr. Tohru Tsuruoka, Dr. Satoshi Moriyama and Dr. Minoru Osada of the International Center for Materials Nanoarchitectonics, National Institute for Materials Science, and Dr. Tohru Higuchi of Tokyo University of Science for their assistance with PL, superconductivity, and magnetic property measurements.

References

  1. 1.
    Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: RIKEN Rev. 37, 7 (2001)Google Scholar
  2. 2.
    Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Nature. 433, 47 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Terabe, K., Hasegawa, T., Liang, C., Aono, M.: Sci. Technol. Adv. Mater. 8, 536 (2007)CrossRefGoogle Scholar
  4. 4.
    Sakamoto, T., Lister, K., Banno, N., Hasegawa, T., Terabe, K., Aono, M.: Appl. Phys. Lett. 91, 092110 (2007)CrossRefGoogle Scholar
  5. 5.
    Terabe, K., Tsuruoka, T., Nayak, A., Ohno, T., Nakayama, T., Aono, M.: Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, p. 515. Wiley-VCH, Berlin (2016)CrossRefGoogle Scholar
  6. 6.
    Hasegawa, T., Terabe, K., Sakamoto, T., Aono, M.: MRS Bull. 34, 929 (2009)CrossRefGoogle Scholar
  7. 7.
    Hasegawa, T., Terabe, K., Tsuruoka, T., Aono, M.: Adv. Mater. 24, 252 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Nat. Mater. 10, 591 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tsuruoka, T., Hasegawa, T., Terabe, K., Aono, M.: Nanotechnology. 23, 435705 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tsuruoka, T., Terabe, K., Hasegawa, T., Valov, I., Waser, R., Aono, M.: Adv. Funct. Mater. 22, 70 (2012)CrossRefGoogle Scholar
  11. 11.
    Tsuruoka, T., Valov, I., Tappertzhofen, S., van den Hurk, J., Hasegawa, T., Waser, R., Aono, M.: Adv. Funct. Mater. 25, 6374 (2015)CrossRefGoogle Scholar
  12. 12.
    Tsuchiya, T., Terabe, K., Aono, M.: Appl. Phys. Lett. 103, 073110 (2013)CrossRefGoogle Scholar
  13. 13.
    Tsuchiya, T., Terabe, K., Aono, M.: Adv. Mater. 26, 1087 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tsuchiya, T., Terabe, K., Aono, M.: Appl. Phys. Lett. 105, 183101 (2014)CrossRefGoogle Scholar
  15. 15.
    Tsuchiya, T., Tsuruoka, T., Terabe, K., Aono, M.: ACS Nano. 9, 2102 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Tsuchiya, T., Ochi, M., Higuchi, T., Terabe, K., Aono, M.: ACS Appl. Mater. Interfaces. 7, 12254 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tsuchiya, T., Moriyama, S., Terabe, K., Aono, M.: Appl. Phys. Lett. 107, 013104 (2015)CrossRefGoogle Scholar
  18. 18.
    Tsuchiya, T., Terabe, K., Ochi, M., Higuchi, T., Osada, M., Yamashita, Y., Ueda, S., Aono, M.: ACS Nano. 10, 1655 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Tsuchiya, T., Ochi, M., Higuchi, T., Terabe, K.: Jpn. J. Appl. Phys. 55, 06GJ03 (2016)CrossRefGoogle Scholar
  20. 20.
    Terabe, K., Tsuchiya, T., Yang, R., Aono, M.: Nanoscale. 8, 13873 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Yang, R., Terabe, K., Liu, G., Tsuruoka, T., Hasegawa, T., Gimzewski, J.K., Aono, M.: ACS Nano. 6, 9515 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Yang, R., Terabe, K., Liu, G., Tsuruoka, T., Hasegawa, T., Aono, M.: Appl. Phys. Lett. 100, 231603 (2012)CrossRefGoogle Scholar
  23. 23.
    Yang, R., Terabe, K., Yao, Y., Tsuruoka, T., Hasegawa, T., Gimzewski, J.K., Aono, M.: Nanotechnology. 24, 384003 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Aono, M., Bando, Y., Ariga, K.: Adv. Mater. 24, 150 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996)Google Scholar
  26. 26.
    Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)Google Scholar
  27. 27.
    Ahn, C.H., Gariglio, S., Paruch, P., Tybell, T., Antognazza, L., Triscone, J.-M.: Science. 284, 1152 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Takahashi, K.S., Gabay, M., Jaccard, D., Shibuya, K., Ohnishi, T., Lippmaa, M., Triscon, J.-M.: Nature. 441, 195 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bhattacharya, A., Eblen-Zayas, M., Staley, N.E., Huber, W.H., Goldman, A.M.: Appl. Phys. Lett. 85, 997 (1994)CrossRefGoogle Scholar
  30. 30.
    Parendo, K.A., Sarwa B. Tan, K.H., Bhattacharya, A., Eblen-Zayas, M., Staley, N.E., Goldman, A.M.: Phys. Rev. Lett. 94, 197004 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Funke, K.: Sci. Technol. Adv. Mater. 14, 043502 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yamamoto, O.: Sci. Technol. Adv. Mater. 18, 504–527 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Park, S., Ruoff, S.R.S.: Nat. Nanotechnol. 4, 217 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Eda, G., Fanchini, G., Chhowalla, M.: Nat. Nanotechnol. 3, 270 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Eda, G., Lin, Y., Mattevi, C., Yamaguchi, H., Chen, H., Chen, I., Chen, C., Chhowalla, M.: Adv. Mater. 22, 505 (2010)PubMedCrossRefGoogle Scholar
  36. 36.
    Eng, A.Y.S., Poh, H.L., Sanek, F., Marysko, M., Matejkova, S., Sofer, Z., Pumera, M.: ACS Nano. 7, 5930 (2013)PubMedCrossRefGoogle Scholar
  37. 37.
    Ambrosi, A., Pumera, M.: Chem. Eur. J. 19, 4748 (2013)PubMedCrossRefGoogle Scholar
  38. 38.
    Miyoshi, S., Akao, Y., Kuwata, N., Kawamura, J., Oyama, Y., Yagi, T., Yamaguchi, S.: Chem. Mater. 26, 5194 (2014)CrossRefGoogle Scholar
  39. 39.
    Miyoshi, S., Akao, Y., Kuwata, N., Kawamura, J., Oyama, Y., Yagi, T., Yamaguchi, S.: Solid State Ionics. 207, 21 (2012)CrossRefGoogle Scholar
  40. 40.
    Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., Chhowalla, M.: J. Phys. Chem. C. 113, 15768 (2009)CrossRefGoogle Scholar
  41. 41.
    Jung, J.H., Cheon, D.S., Liu, F., Lee, K.B., Seo, T.S.: Angew. Chem. Int. Ed. 49, 5708 (2010)CrossRefGoogle Scholar
  42. 42.
    Zhao, X.-H., Kong, R.-M., Zhang, X.-B., Meng, H.-M., Liu, W.-N., Tan, W., Shen, G.-L., Yu, R.-Q.: Anal. Chem. 83, 5062 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jeon, S.-J., Kwak, S.-Y., Yim, D., Ju, J.-M., Kim, J.-H.: J. Am. Chem. Soc. 136, 10842 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Li, M., Cushing, S.K., Zhou, X., Guo, S., Wu, N.: J. Mater. Chem. 22, 23374 (2012)CrossRefGoogle Scholar
  45. 45.
    Wong, J.J.I., Swartz, A.G., Zheng, R., Han, W., Kawakami, R.K.: Phys. Rev. B. 86, 060409 (2012)CrossRefGoogle Scholar
  46. 46.
    Thackey, M.M., David, W.I.F., Goodenough, J.B.: Mater. Res. Bull. 17, 785 (1982)CrossRefGoogle Scholar
  47. 47.
    Fontcuberta, J., Rodriguez, J., Pernet, M., Longworth, G., Goodenough, J.B.: J. Appl. Phys. 59, 1918 (1986)CrossRefGoogle Scholar
  48. 48.
    Neto, J.M., Nunez, E., Domingues, P.H.: J. Mater. Sci. Lett. 16, 231 (1997)CrossRefGoogle Scholar
  49. 49.
    Sivakumar, V., Kumar, S., Ross, C.A., Shao-Horn, Y.: ECS Trans. 2, 1 (2007)CrossRefGoogle Scholar
  50. 50.
    Yamada, T., Morita, K., Kume, K., Yoshikawa, H., Awaga, K.: J. Mater. Chem. C. 2, 5183 (2014)CrossRefGoogle Scholar
  51. 51.
    Inoue, J., Maekawa, S.: Phys. Rev. B. 53, R11927 (1996)CrossRefGoogle Scholar
  52. 52.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Nature. 525, 73–76 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)CrossRefGoogle Scholar
  54. 54.
    Glover III, R.E., Sherrill, M.D.: Phys. Rev. Lett. 5, 248 (1960)CrossRefGoogle Scholar
  55. 55.
    Choi, J., Pradheesh, R., Kim, H., Im, H., Chong, Y., Chae, D.-H.: Appl. Phys. Lett. 105, 012601 (2014)CrossRefGoogle Scholar
  56. 56.
    Tsuchiya, T., Miyoshi, S., Yamashita, Y., Yoshikawa, H., Terabe, K., Kobayashi, K., Yamaguchi, S.: Solid State Ionics. 253, 110 (2013)CrossRefGoogle Scholar
  57. 57.
    Tsuchiya, T., Miyoshi, S., Yamashita, Y., Yoshikawa, H., Terabe, K., Kobayashi, K., Yamaguchi, S.: Sci. Technol. Adv. Mater. 14, 45001 (2013)CrossRefGoogle Scholar
  58. 58.
    Kim, S.J., Tsuruoka, T., Hasegawa, T., Aono, M., Terabe, K., Aono, M.: AIMS Mater. Sci. 3, 245 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Takashi Tsuchiya
    • 1
    Email author
  • Kazuya Terabe
    • 1
  • Masakazu Aono
    • 1
  1. 1.International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations