Atomic Switch pp 139-159 | Cite as

Solid-Polymer-Electrolyte-Based Atomic Switches

  • Tohru TsuruokaEmail author
  • Karthik Krishnan
  • Saumya R. Mohapatra
  • Shouming Wu
  • Masakazu Aono
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


The atomic switch operation is demonstrated using a solid polymer electrolyte (SPE) as a matrix material. Similar to inorganic electrolyte-based atomic switches, SPE-based atomic switches exhibit not only bi-stable resistive switching but also quantized conductance. The high ionic conductivity of SPE enables us to directly observe filament growth behaviors even in micrometer-scaled devices, and to reveal the kinetic factors determining the filament growth processes. We also succeed in fabricating devices on a plastic substrate using an ink-jet technique, and to demonstrate stable resistive switching under substrate bending. All the results indicate that the SPE-based atomic switch has great potential for the development flexible switch/memory devices as well as new types of atomic-scale devices with high-speed operation and ultra-low power consumption.



We would like to thank to our collaborators, T. Hasegawa, K. Terabe, J. P. Hill, K. Ariga, M. Muruganathan, and H. Mizuta.


  1. 1.
    Scott, J.C., Bozano, L.D.: Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452 (2007)CrossRefGoogle Scholar
  2. 2.
    Altebaeumer, T., Gotsmann, B., Pozidis, H., Knoll, A., Duerig, U.: Nanoscale shape-memory function in highly cross-liked polymers. Nano Lett. 8, 4398 (2008)CrossRefGoogle Scholar
  3. 3.
    Ling, Q.D., Liaw, D.J., Zhu, C., Chen, D.S., Kang, E., Neoh, K.: Polymer electronic memories: materials, devices and mechanisms. Prog. Polym. Sci. 33, 917 (2008)CrossRefGoogle Scholar
  4. 4.
    Billen, J., Steudel, S., Müller, R., Genoe, J., Heremans, P.: A comprehensive model for bipolar electrical switching of CuTCNQ memories. Appl. Phys. Lett. 91, 263507 (2007)CrossRefGoogle Scholar
  5. 5.
    Kever, T., Böttiger, U., Schindler, C., Waser, R.: Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Appl. Phys. Lett. 91, 083506 (2007)CrossRefGoogle Scholar
  6. 6.
    Lai, Q., Shu, Z., Chen, Y., Patil, S., Wudi, F.: Analog memory capacitor based on field-configurable ion-doped polymers. Appl. Phys. Lett. 88, 133515 (2006)CrossRefGoogle Scholar
  7. 7.
    Ssenyange, S., Yan, H., MaCreery, R.L.: Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions. Langmuir. 22, 10689 (2006)CrossRefGoogle Scholar
  8. 8.
    Scrosati, B. (ed.): Application of Electroactive Polymers. Chapman & Hall, London (1993)Google Scholar
  9. 9.
    Fenton, D.E., Parker, J.M., Wright, P.V.: Complexes of alkali metal ions with poly(ethylene oxide). Polymer. 14, 589 (1973)CrossRefGoogle Scholar
  10. 10.
    Wu, S., Tsuruoka, T., Terabe, K., Hasegawa, T., Hill, J.P., Ariga, K., Aono, M.: Development of polymer electrolyte based resistive switch. Proc. SPIE. 7493, 749364 (2009)CrossRefGoogle Scholar
  11. 11.
    Wu, S., Tsuruoka, T., Terabe, K., Hasegawa, T., Hill, J.P., Ariga, K., Aono, M.: A polymer-electrolyte-based atomic switch. Adv. Funct. Mater. 21, 93 (2011)CrossRefGoogle Scholar
  12. 12.
    Lascaud, S., Perrier, M., Armand, M., Prud’homme, J., Kapfer, B., Vallée, A., Gauthier, M.: Evidence for ion pairs and/or triple ions from transport measurements in mixed-alkali polyether electrolytes. Electrochim. Acta. 43, 1407 (1998)CrossRefGoogle Scholar
  13. 13.
    Bard, A.J., Parson, R., Jordan, J.: Standard Potentials in Aqueous Solution. Marcel Dekker, New York (1985)Google Scholar
  14. 14.
    Mohapatra, S.R., Tsuruoka, T., Krishnan, K., Hasegawa, T., Aono, M.: Effects of temperature and ambient pressure on the resistive switching behavior of polymer-based atomic switches. J. Mater. Chem. C. 3, 5715 (2015)CrossRefGoogle Scholar
  15. 15.
    Bruce, P.G.: Ion-polyether coordination complexes: crystalline ionic conductors for clean energy storage. Dalton Trans. 11, 1365 (2006)CrossRefGoogle Scholar
  16. 16.
    Christie, A.M., Lilley, S.J., Staunton, E., Andreev, Y.G., Bruce, P.G.: Increasing the conductivity of crystalline polymer electrolytes. Nature. 433, 50 (2005)CrossRefGoogle Scholar
  17. 17.
    Krishnan, K., Tsuruoka, T., Mannequin, C., Aono, M.: Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches. Adv. Mater. 28, 640 (2016)CrossRefGoogle Scholar
  18. 18.
    Krishnan, K., Tsuruoka, T., Aono, M.: Direct observation of anodic dissolution and filament growth behavior in polyethylene-oxide-based atomic switch structures. Jpn. J. Appl. Phys. 55, 06GK02 (2016)CrossRefGoogle Scholar
  19. 19.
    Krishnan, K., Aono, M., Tsuruoka, T.: Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices. Nanoscale. 8, 13976 (2016)CrossRefGoogle Scholar
  20. 20.
    Ratner, M.A., Shriver, D.F.: Ion transport in solvent-free polymers. Chem. Rev. 88, 109 (1988)CrossRefGoogle Scholar
  21. 21.
    Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature. 433, 47 (2005)CrossRefGoogle Scholar
  22. 22.
    Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Jimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591 (2011)CrossRefGoogle Scholar
  23. 23.
    Nayak, A., Ohno, T., Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M.: Controlling the synaptic plasticity of a Cu2S gap-type atomic switch. Adv. Funct. Mater. 22, 3606 (2012)CrossRefGoogle Scholar
  24. 24.
    Tsuruoka, T., Hasegawa, T., Terabe, K., Aono, M.: Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch. Nanotechnology. 23, 435705 (2012)CrossRefGoogle Scholar
  25. 25.
    Krishnan, K., Muruganathan, M., Tsuruoka, T., Mizuta, H., Aono, M.: Highly reproducible and regulated conductance quantization in a polymer-based atomic switch. Adv. Funct. Mater. 27, 1605104 (2017)CrossRefGoogle Scholar
  26. 26.
    Krishnan, K., Muruganathan, M., Tsuruoka, T., Mizuta, H., Aono, M.: Quantized conductance operation near a single-atom point contact in a polymer-based atomic switch. Jpn. J. Appl. Phys. 56, 06GF02 (2017)CrossRefGoogle Scholar
  27. 27.
    de Gans, B.J., Duineveld, P.C., Schubert, U.S.: Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16, 203 (2004)CrossRefGoogle Scholar
  28. 28.
    Mohapatra, S.R., Tsuruoka, T., Hasegawa, T., Terabe, K., Aono, M.: Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte. AIP Adv. 2, 022144 (2012)CrossRefGoogle Scholar
  29. 29.
    Mohapatra, S.R., Tsuruoka, T., Hasegawa, T., Terabe, K., Aono, M.: Flexible polymer atomic switch using ink-jet printing technique. Mater. Res. Soc. Symp. Proc. 1430, 69–74 (2012)CrossRefGoogle Scholar
  30. 30.
    Shin, K.Y., Lee, S.H., Oh, J.H.: Solvent and substrate effects on inkjet-printed dots and lines of silver nanoparticle colloids. J. Micromech. Microeng. 21, 045012 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tohru Tsuruoka
    • 1
    Email author
  • Karthik Krishnan
    • 2
  • Saumya R. Mohapatra
    • 3
  • Shouming Wu
    • 4
  • Masakazu Aono
    • 1
  1. 1.International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Council of Scientific and Industrial ResearchCentral Electrochemical Research InstituteKaraikudiIndia
  3. 3.Department of PhysicsNational Institute of TechnologyCachar SilcharIndia
  4. 4.Zhejiang Fluoride and Silicon Research Institute, Quzhou National Hi-Tech Industrial Development ZoneQuzhouChina

Personalised recommendations