Advertisement

Pathway to Atomic-Switch Based Programmable Logic

  • T. SakamotoEmail author
  • M. Miyamura
  • Y. Tsuji
  • X. Bai
  • A. Morioka
  • R. Nebashi
  • M. Tada
  • N. Banno
  • K. Okamoto
  • N. Iguchi
  • H. Hada
  • T. Sugibayashi
Conference paper
  • 42 Downloads
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Atomic switch featuring non-volatility, large on/off conductance ratio, and small foot print advantageously applies to programmable logic such as field programmable gate array (FPGA). FPGA is a reconfigurable hardware with a high energy efficiency but has a drawback of area penalty for programmability. Conventional FPGA utilizes a large number of programmable switches composed of SRAM and pass transistor. Atomic switch replaces the programmable switch, resulting in reducing the area and power consumption and enhancing the performance.

Notes

Acknowledgments

A part of this work was supported by NEDO. A part of the device processing was operated by AIST, Japan.

References

  1. 1.
    Horowitz, M.: Computing’s energy problem (and what we can do about it). IEEE ISSCC Dig. Tech. Papers. 10–14 (Feb. 2014)Google Scholar
  2. 2.
    Kuon, I., Rose, J.: Measuring the gap between FPGAs and ASICs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 26(2), 203–215 (Feb. 2007)CrossRefGoogle Scholar
  3. 3.
    Suzuki, D., Natsui, M., Ikeda, S., Hasegawa, H., Miura, K., Hayakawa, J., Endoh, T., Ohno, H., Hanyu, T.: Fabrication of a nonvolatile lookup-table circuit chip using magneto/semiconductor-hybrid structure for an immediate-power-up field programmable gate array. Symposium on VLSI Circuits Dig. Tech. Papers, 80–81 (June 2009)Google Scholar
  4. 4.
    Liauw, Y.Y., Zhang, Z., Kim, W., El Gamal, A., Wong, S.S.: Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory. IEEE ISSCC Dig. Tech. Papers, 406–407 (Feb. 2012)Google Scholar
  5. 5.
    Wen, C.-Y., Li, J., Kim, S., Breitwisch, M., Lam, C., Paramesh, J., Pileggi, L.T.: A non-volatile look-up table design using PCM (phase-change memory) cells. Symp VLSI Circuits Dig. Tech. Papers, 302–303 (June 2011)Google Scholar
  6. 6.
    Sakamoto, T., Kaeriyama, S., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T., Aono, M.: A nonvolatile programmable solid-electrolyte nanometer switch. IEEE ISSCC Dig. Tech. Papers. 290–291 (Feb. 2004)Google Scholar
  7. 7.
    Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature. 433, 47–50 (Jan. 2005)CrossRefGoogle Scholar
  8. 8.
    Sakamoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., Aono, M.: Nanometer-scale switches using copper sulfide. Appl. Phys. Lett. 82(18), 3032–3034 (2003)CrossRefGoogle Scholar
  9. 9.
    Sakamoto, T., Lister, K., Banno, N., Hasegawa, T., Terabe, K., Aono, M.: Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91(9), 092110–092112 (2007)CrossRefGoogle Scholar
  10. 10.
    Tada, M., Sakamoto, T., Miyamura, M., Banno, N., Okamoto, K., Iguchi, N., Hada, H.: Improved OFF-state reliability of nonvolatile resistive switch with low programming voltage. IEEE Trans. Electron Devices. 59(9), 2357–2362 (2012)CrossRefGoogle Scholar
  11. 11.
    Miyamura, M., Nakaya, S., Tada, M., Sakamoto, T., Okamoto, K., Banno, N., Ishida, S., Ito, K., Hada, H., Sakimura, N., Sugibayashi, T., Motomura, M.: Programmable cell array using rewritable solid-electrolyte switch integrated in 90nm CMOS. IEEE ISSCC Dig. Tech. Papers. 228–229 (Feb. 2011)Google Scholar
  12. 12.
    Miyamura, M., Tada, M., Sakamoto, T., Banno, N., Okamoto, K., Iguchi, N., Hada, H.: First demonstration of logic mapping on nonvolatile programmable cell using complementary atom switch. IEEE IEDM Dig. Tech. Papers. 247–250 (Dec. 2012)Google Scholar
  13. 13.
    Miyamura, M., Sakamoto, T., Tada, M., Banno, N., Okamoto, K., Iguchi, N., Hada, H.: Low-power programmable-logic cell arrays using nonvolatile complementary atom switch. In Proc. ISQED. 330–334 (March 2014)Google Scholar
  14. 14.
    Bai, X., Sakamoto, T., Tada, M., Miyamura, M., Tsuji, Y., Morioka, A., Nebashi, R., Banno, N., Okamoto, K., Iguchi, N., Hada, H., Sugibayashi, T.: A low-power Cu atom switch programmable logic fabricated in a 40nm-node CMOS technology. Symp. VLSI Technol. Dig. Tech. Papers. T28–T29 (June 2017)Google Scholar
  15. 15.
    Tada, M., Sakamoto, T., Banno, N., Okamoto, K., Iguchi, N., Hada, H., Miyamura, M.: Improved ON-state reliability of atom switch using alloy electrodes. IEEE Trans. Electron Devices. 60(10), 3534–3540 (2013)CrossRefGoogle Scholar
  16. 16.
    Miyamura, M., Sakamoto, T., Tsuji, Y., Tada, M., Banno, N., Okamoto, K., Iguchi, N., Hada, H.: 0.5-V highly power-efficient programmable logic using nonvolatile configuration switch in BEOL. Proc. ACM/SIGDA Int. Symp. FPGA. 236–239 (Feb. 2015)Google Scholar
  17. 17.
  18. 18.
    Tada, M., Sakamoto, T., Miyamura, M., Banno, N., Okamoto, K., Iguchi, N., Hada, H.: Polymer solid-electrolyte switch embedded on CMOS for nonvolatile crossbar switch. IEEE Trans. Electron Devices. 58(12), 4398–4406 (2011)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Sakamoto, T., Tada, M., Okamoto, K., Hada, H.: Electronic conduction mechanism in atom switch using polymer solid electrolyte. IEEE Trans. Electron Devices. 59(12), 3574–3577 (2012)CrossRefGoogle Scholar
  21. 21.
    Nakaya, S., Miyamura, M., Sakimura, N., Nakamura, Y., Sugibayashi, T.: A non-volatile reconfigurable off-loader for wireless sensor nodes. ACM Sigarch Comput. Architect. News. 40(5), 87–92 (2012)CrossRefGoogle Scholar
  22. 22.
    Tsuji, Y., Bai, X., Miyamura, M., Sakamoto, T., Tada, M., Banno, N., Okamoto, K., Iguchi, N., Sugii, N., Hada, H.: Sub-μW standby power, <18 μW/DMIPS@25MHz MCU with embedded atom-switch programmable logic and ROM. Symp. VLSI Technol. Dig. Tech. Papers. T86–T87 (2014)Google Scholar
  23. 23.
    Sakamoto, T., Tada, M., Tsuji, Y., Makiyama, H., Hasegawa, T., Yamamoto, Y., Okanishi, S., Banno, N., Miyamura, M., Okamoto, K., Iguchi, N., Ogasahara, Y., Oda, H., Kamohara, S., Yamagata, Y., Sugii, N., Hada, H.: Low-power embedded read-only memory using atom switch and silicon-on-thin-buried-oxide transistor. Appl. Phys. Express. 8(4), 045201 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • T. Sakamoto
    • 1
    Email author
  • M. Miyamura
    • 1
  • Y. Tsuji
    • 1
  • X. Bai
    • 1
  • A. Morioka
    • 1
  • R. Nebashi
    • 1
  • M. Tada
    • 1
  • N. Banno
    • 1
  • K. Okamoto
    • 1
  • N. Iguchi
    • 1
  • H. Hada
    • 1
  • T. Sugibayashi
    • 1
  1. 1.System Platform Research Laboratories, NEC CorporationIbarakiJapan

Personalised recommendations