Atomic Switch pp 175-199 | Cite as

Artificial Synapses Realized by Atomic Switch Technology

  • Tohru TsuruokaEmail author
  • Takeo Ohno
  • Alpana Nayak
  • Rui Yang
  • Tsuyoshi Hasegawa
  • Kazuya Terabe
  • James K. Gimzewski
  • Masakazu Aono
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


The atomic switch technology can be used to emulate the synaptic plasticity underlying short-term and long-term memory functions in the human brain. These functions are realized by transport of metal ions or oxygen ions in sulfide or oxide matrices. The change in conductance of these devices is considered analogous to the change in strength of biological synapses that varies depending on the strength, frequency, and number of stimulating input pulses. The devices also exhibit sensitivity to the moisture in and temperature of the ambient environment, and configurable multifunction including rectification and synaptic plasticity under different electroforming conditions. These observations indicate that the atomic switch technology has great potential for use as an essential building block for neural computing systems.


  1. 1.
    Arnesano, F.: The role of copper ion and the ubiquitin system in neurodegenerative disorders. In: Pignataro, B. (ed) Ideas in Chemistry and Molecular Sciences: Where Chemistry Meets Life. WILEY-VCH, Weinheim (2010)Google Scholar
  2. 2.
    Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591 (2011)CrossRefGoogle Scholar
  3. 3.
    Nayak, A., Ohno, T., Tsuruoka, T., Terabe, K., Hasegawa, T., Gimzewski, J.K., Aono, M.: Controlling the synaptic plasticity of a Cu2S gap-type atomic switch. Adv. Funct. Mater. 22, 3606 (2012)CrossRefGoogle Scholar
  4. 4.
    Tsuruoka, T., Hasegawa, T., Terabe, K., Aono, M.: Conductance quantization and synaptic behavior of a Ta2O5-based atomic switch. Nanotechnology. 23, 435705 (2012)CrossRefGoogle Scholar
  5. 5.
    Yang, R., Terabe, K., Yao, Y., Tsuruoka, T., Hasegawa, T., Gimzewski, J.K., Aono, M.: Synaptic plasticity and memory functions achieved in a WO3-x-based nanoionics device by using the principle of atomic switch operation. Nanotechnology. 24, 384003 (2013)CrossRefGoogle Scholar
  6. 6.
    Hasegawa, T., Ohno, T., Terabe, K., Tsuruoka, T., Nakayama, T., Gimzewski, J.K., Aono, M.: Learning abilities achieved by a single solid-state atomic switch. Adv. Mater. 22, 1831 (2010)CrossRefGoogle Scholar
  7. 7.
    Hasegawa, T., Nayak, A., Ohno, T., Terabe, K., Tsuruoka, T., Gimzewski, J.K., Aono, M.: Memristive operations demonstrated by gap-type atomic switches. Appl. Phys. A. 102, 811 (2011)CrossRefGoogle Scholar
  8. 8.
    Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297 (2010)CrossRefGoogle Scholar
  9. 9.
    Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its control processes. In: Spence, K.W., Spence, J.T. (eds.) The Psychology of Learning and Motivation: Advances in Research and Theory, vol. 2, pp. 89–195. Academic, New York (1968)Google Scholar
  10. 10.
    Ebbinghaus, H.: In: Ruger, H.A., Bussenius, C.E. (eds. trans.) Memory: A Contribution to Experimental Psychology. Teachers College, Columbia University, New York (1913)Google Scholar
  11. 11.
    Rubin, D.C., Wenzel, A.E.: One hundred years of forgetting: A quantitative description of retention. Psychol. Rev. 103, 734 (1996)CrossRefGoogle Scholar
  12. 12.
    Ohno, T., Hasegawa, T., Nayak, A., Tsuruoka, T., Gimzewski, J.K., Aono, M.: Sensory and short-term memory formations observed in a Ag2S gap-type atomic switch. Appl. Phys. Lett. 99, 203108 (2011)CrossRefGoogle Scholar
  13. 13.
    Kundu, M., Hasegawa, T., Terabe, K., Aono, M.: Effect of sulfurization conditions on structural and electrical properties of copper sulfide films. J. Appl. Phys. 103, 073523 (2008)CrossRefGoogle Scholar
  14. 14.
    Urban, J., Sack-Kongehl, H., Weiss, K.: HREM studies of the structure and the oxidation process of copper clusters created by inert gas aggregation. Z. Phys. D. 36, 73 (1996)CrossRefGoogle Scholar
  15. 15.
    Ruuska, H., Tapani, A.P.: MP2 study on water adsorption on cluster models of Cu(111). J. Phys. Chem. B. 108, 2614 (2004)CrossRefGoogle Scholar
  16. 16.
    ter Maat, H., Hogendoorn, J.A., Versteeg, G.F.: The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent: Part II. The regeneration of copper sulfide to copper oxide-an experimental study. Sep. Purif. Technol. 43, 199 (2005)CrossRefGoogle Scholar
  17. 17.
    Nayak, A., Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M.: Theoretical investigation of kinetics of a Cu2S-based gap-type atomic switch. Appl. Phys. Lett. 98, 233501 (2011)CrossRefGoogle Scholar
  18. 18.
    Nayak, A., Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M.: Switching kinetics of a Cu2S-based gap-type atomic switch. Nanotechnology. 22, 235201 (2011)CrossRefGoogle Scholar
  19. 19.
    Schiff, S.J., Somjen, G.G.: The effects of temperature on synaptic transmission in hippocampal tissue slices. Brain Res. 345, 279 (1985)CrossRefGoogle Scholar
  20. 20.
    Klyachko, V.A., Stevens, C.F.: Temperature-dependent shift of balance among the components of short-term plasticity in hippocampal synapses. J. Neurosci. 26, 6945 (2006)CrossRefGoogle Scholar
  21. 21.
    Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M.: Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology. 21, 425205 (2010)CrossRefGoogle Scholar
  22. 22.
    Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M.: Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch. Nanotechnology. 22, 254013 (2011)CrossRefGoogle Scholar
  23. 23.
    Tsuruoka, T., Hasegawa, T., Terabe, K., Aono, M.: Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer. J. Electroceram. 39, 143 (2017). CrossRefGoogle Scholar
  24. 24.
    Hasegawa, T., Terabe, K., Sakamoto, K., Aono, M.: Nanoionics switching devices: “Atomic switches”. MRS Bull. 34, 929 (2009)CrossRefGoogle Scholar
  25. 25.
    Tappertzhofen, S., Valov, I., Tsuruoka, T., Hasegawa, T., Waser, R., Aono, M.: Generic relevance of counter charges for cation-based nanoscale resistive switching memory. ACS Nano. 7, 6396 (2013)CrossRefGoogle Scholar
  26. 26.
    Tsuruoka, T., Valov, I., Tappertzhofen, S., van den Hulk, J., Hasegawa, T., Waver, R., Aono, M.: Redox reactions at Cu(Ag)/Ta2O5 interfaces and the effects of Ta2O5 film density on the forming process in atomic switch structures. Adv. Funct. Mater. 25, 6374 (2015)CrossRefGoogle Scholar
  27. 27.
    Tsuruoka, T., Terabe, K., Hasegawa, T., Valov, I., Waser, R., Aono, M.: Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22, 70 (2012)CrossRefGoogle Scholar
  28. 28.
    Mannequin, C., Tsuruoka, T., Hasegawa, T., Aono, M.: Composition of thin Ta2O5 films deposited by different methods and the effects of humidity on their resistive switching behavior. Jpn. J. Appl. Phys. 55, 06GG08 (2016)CrossRefGoogle Scholar
  29. 29.
    Tsuruoka, T., Valov, I., Mannequin, C., Hasegawa, T., Waser, R., Aono, M.: Humidity effects on the redox reactions and ionic transport in a Cu/Ta2O5 atomic switch structure. Jpn. J. Appl. Phys. 55, 06GJ09 (2016)CrossRefGoogle Scholar
  30. 30.
    Tsuruoka, T., Hasegawa, T., Valov, I., Waser, R., Aono, M.: Rate-limiting processes in the fast SET operation of a gapless-type Cu-Ta2O5 atomic switch. AIP Adv. 3, 032114 (2013)CrossRefGoogle Scholar
  31. 31.
    Mannequin, C., Tsuruoka, T., Hasegawa, T., Aono, M.: Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes. Appl. Surf. Sci. 385, 426 (2016)CrossRefGoogle Scholar
  32. 32.
    Tsuruoka, T., Hasegawa, T., Aono, M.: Synaptic plasticity and memristive behavior operated by atomic switches. (2014)
  33. 33.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature. 453, 80 (2008)CrossRefGoogle Scholar
  34. 34.
    Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)CrossRefGoogle Scholar
  35. 35.
    Magleby, K.L.: The effect of repetitive stimulation on facilitation of transmitter release at the frog neuromuscular junction. J. Physiol. 234, 327 (1973)CrossRefGoogle Scholar
  36. 36.
    Atluri, P.P., Regehr, W.G.: Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661 (1996)CrossRefGoogle Scholar
  37. 37.
    Yang, R., Terabe, K., Liu, G., Tsuruoka, T., Hasegawa, T., Gimzewski, J.K., Aono, M.: On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano. 6, 9515 (2012)CrossRefGoogle Scholar
  38. 38.
    Yang, R., Terabe, K., Tsuruoka, T., Hasegawa, T., Aono, M.: Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO3-x-based nanoionics devices. Appl. Phys. Lett. 100, 231603 (2012)CrossRefGoogle Scholar
  39. 39.
    Tan, Z.H., Yang, R., Terabe, K., Yin, X.B., Zhang, X.D., Guo, X.: Synaptic metaplasticity realized in oxide memristive devices. Adv. Mater. 28, 377 (2016)CrossRefGoogle Scholar
  40. 40.
    Yang, R., Terabe, K., Guo, X.: The Joule heating effect on the electroforming process for the resistive switching behavior in Pt/WO3-x/Pt memristive devices, oral presentation. In: PRiME2016, Honolulu, HI, 2016.10.05Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tohru Tsuruoka
    • 1
    Email author
  • Takeo Ohno
    • 2
  • Alpana Nayak
    • 3
  • Rui Yang
    • 4
  • Tsuyoshi Hasegawa
    • 5
  • Kazuya Terabe
    • 1
  • James K. Gimzewski
    • 6
  • Masakazu Aono
    • 1
  1. 1.International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Faculty of Science and TechnologyGraduate School of Engineering, Oita UniversityOitaJapan
  3. 3.Department of PhysicsIndian Institute of Technology PatnaBihta, PatnaIndia
  4. 4.School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  5. 5.Department of Applied PhysicsWaseda UniversityShinjuku, TokyoJapan
  6. 6.Department of Chemistry & BiochemistryUniversity of California Los AngelesEast Los AngelesUSA

Personalised recommendations